Towards Automated Animal Density Estimation with Acoustic Spatial Capture-Recapture
- paper_url: http://arxiv.org/abs/2308.12859
- repo_url: None
- paper_authors: Yuheng Wang, Juan Ye, David L. Borchers
Abstract:
Passive acoustic monitoring can be an effective way of monitoring wildlife populations that are acoustically active but difficult to survey visually. Digital recorders allow surveyors to gather large volumes of data at low cost, but identifying target species vocalisations in these data is non-trivial. Machine learning (ML) methods are often used to do the identification. They can process large volumes of data quickly, but they do not detect all vocalisations and they do generate some false positives (vocalisations that are not from the target species). Existing wildlife abundance survey methods have been designed specifically to deal with the first of these mistakes, but current methods of dealing with false positives are not well-developed. They do not take account of features of individual vocalisations, some of which are more likely to be false positives than others. We propose three methods for acoustic spatial capture-recapture inference that integrate individual-level measures of confidence from ML vocalisation identification into the likelihood and hence integrate ML uncertainty into inference. The methods include a mixture model in which species identity is a latent variable. We test the methods by simulation and find that in a scenario based on acoustic data from Hainan gibbons, in which ignoring false positives results in 17% positive bias, our methods give negligible bias and coverage probabilities that are close to the nominal 95% level.
Sparks of Large Audio Models: A Survey and Outlook
- paper_url: http://arxiv.org/abs/2308.12792
- repo_url: None
- paper_authors: Siddique Latif, Moazzam Shoukat, Fahad Shamshad, Muhammad Usama, Heriberto Cuayáhuitl, Björn W. Schuller
Abstract:
This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources–from human voices to musical instruments and environmental sounds–poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, \textit{Large Audio Models}, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding \textit{Foundational Large Audio Models}, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of \textit{Large Audio Models} with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models.
WavMark: Watermarking for Audio Generation
- paper_url: http://arxiv.org/abs/2308.12770
- repo_url: None
- paper_authors: Guangyu Chen, Yu Wu, Shujie Liu, Tao Liu, Xiaoyong Du, Furu Wei
Abstract:
Recent breakthroughs in zero-shot voice synthesis have enabled imitating a speaker’s voice using just a few seconds of recording while maintaining a high level of realism. Alongside its potential benefits, this powerful technology introduces notable risks, including voice fraud and speaker impersonation. Unlike the conventional approach of solely relying on passive methods for detecting synthetic data, watermarking presents a proactive and robust defence mechanism against these looming risks. This paper introduces an innovative audio watermarking framework that encodes up to 32 bits of watermark within a mere 1-second audio snippet. The watermark is imperceptible to human senses and exhibits strong resilience against various attacks. It can serve as an effective identifier for synthesized voices and holds potential for broader applications in audio copyright protection. Moreover, this framework boasts high flexibility, allowing for the combination of multiple watermark segments to achieve heightened robustness and expanded capacity. Utilizing 10 to 20-second audio as the host, our approach demonstrates an average Bit Error Rate (BER) of 0.48% across ten common attacks, a remarkable reduction of over 2800% in BER compared to the state-of-the-art watermarking tool. See https://aka.ms/wavmark for demos of our work.
Real-time Detection of AI-Generated Speech for DeepFake Voice Conversion
- paper_url: http://arxiv.org/abs/2308.12734
- repo_url: None
- paper_authors: Jordan J. Bird, Ahmad Lotfi
Abstract:
There are growing implications surrounding generative AI in the speech domain that enable voice cloning and real-time voice conversion from one individual to another. This technology poses a significant ethical threat and could lead to breaches of privacy and misrepresentation, thus there is an urgent need for real-time detection of AI-generated speech for DeepFake Voice Conversion. To address the above emerging issues, the DEEP-VOICE dataset is generated in this study, comprised of real human speech from eight well-known figures and their speech converted to one another using Retrieval-based Voice Conversion. Presenting as a binary classification problem of whether the speech is real or AI-generated, statistical analysis of temporal audio features through t-testing reveals that there are significantly different distributions. Hyperparameter optimisation is implemented for machine learning models to identify the source of speech. Following the training of 208 individual machine learning models over 10-fold cross validation, it is found that the Extreme Gradient Boosting model can achieve an average classification accuracy of 99.3% and can classify speech in real-time, at around 0.004 milliseconds given one second of speech. All data generated for this study is released publicly for future research on AI speech detection.
Whombat: An open-source annotation tool for machine learning development in bioacoustics
- paper_url: http://arxiv.org/abs/2308.12688
- repo_url: None
- paper_authors: Santiago Martinez Balvanera, Oisin Mac Aodha, Matthew J. Weldy, Holly Pringle, Ella Browning, Kate E. Jones
Abstract:
- Automated analysis of bioacoustic recordings using machine learning (ML) methods has the potential to greatly scale biodiversity monitoring efforts. The use of ML for high-stakes applications, such as conservation research, demands a data-centric approach with a focus on utilizing carefully annotated and curated evaluation and training data that is relevant and representative. Creating annotated datasets of sound recordings presents a number of challenges, such as managing large collections of recordings with associated metadata, developing flexible annotation tools that can accommodate the diverse range of vocalization profiles of different organisms, and addressing the scarcity of expert annotators. 2. We present Whombat a user-friendly, browser-based interface for managing audio recordings and annotation projects, with several visualization, exploration, and annotation tools. It enables users to quickly annotate, review, and share annotations, as well as visualize and evaluate a set of machine learning predictions on a dataset. The tool facilitates an iterative workflow where user annotations and machine learning predictions feedback to enhance model performance and annotation quality. 3. We demonstrate the flexibility of Whombat by showcasing two distinct use cases: an project aimed at enhancing automated UK bat call identification at the Bat Conservation Trust (BCT), and a collaborative effort among the USDA Forest Service and Oregon State University researchers exploring bioacoustic applications and extending automated avian classification models in the Pacific Northwest, USA. 4. Whombat is a flexible tool that can effectively address the challenges of annotation for bioacoustic research. It can be used for individual and collaborative work, hosted on a shared server or accessed remotely, or run on a personal computer without the need for coding skills.
Naaloss: Rethinking the objective of speech enhancement
- paper_url: http://arxiv.org/abs/2308.12615
- repo_url: None
- paper_authors: Kuan-Hsun Ho, En-Lun Yu, Jeih-weih Hung, Berlin Chen
Abstract:
Reducing noise interference is crucial for automatic speech recognition (ASR) in a real-world scenario. However, most single-channel speech enhancement (SE) generates “processing artifacts” that negatively affect ASR performance. Hence, in this study, we suggest a Noise- and Artifacts-aware loss function, NAaLoss, to ameliorate the influence of artifacts from a novel perspective. NAaLoss considers the loss of estimation, de-artifact, and noise ignorance, enabling the learned SE to individually model speech, artifacts, and noise. We examine two SE models (simple/advanced) learned with NAaLoss under various input scenarios (clean/noisy) using two configurations of the ASR system (with/without noise robustness). Experiments reveal that NAaLoss significantly improves the ASR performance of most setups while preserving the quality of SE toward perception and intelligibility. Furthermore, we visualize artifacts through waveforms and spectrograms, and explain their impact on ASR.
Emotion-Aligned Contrastive Learning Between Images and Music
- paper_url: http://arxiv.org/abs/2308.12610
- repo_url: None
- paper_authors: Shanti Stewart, Tiantian Feng, Kleanthis Avramidis, Shrikanth Narayanan
Abstract:
Traditional music search engines rely on retrieval methods that match natural language queries with music metadata. There have been increasing efforts to expand retrieval methods to consider the audio characteristics of music itself, using queries of various modalities including text, video, and speech. Most approaches aim to match general music semantics to the input queries, while only a few focus on affective qualities. We address the task of retrieving emotionally-relevant music from image queries by proposing a framework for learning an affective alignment between images and music audio. Our approach focuses on learning an emotion-aligned joint embedding space between images and music. This joint embedding space is learned via emotion-supervised contrastive learning, using an adapted cross-modal version of the SupCon loss. We directly evaluate the joint embeddings with cross-modal retrieval tasks (image-to-music and music-to-image) based on emotion labels. In addition, we investigate the generalizability of the learned music embeddings with automatic music tagging as a downstream task. Our experiments show that our approach successfully aligns images and music, and that the learned embedding space is effective for cross-modal retrieval applications.
Exploiting Time-Frequency Conformers for Music Audio Enhancement
- paper_url: http://arxiv.org/abs/2308.12599
- repo_url: None
- paper_authors: Yunkee Chae, Junghyun Koo, Sungho Lee, Kyogu Lee
Abstract:
With the proliferation of video platforms on the internet, recording musical performances by mobile devices has become commonplace. However, these recordings often suffer from degradation such as noise and reverberation, which negatively impact the listening experience. Consequently, the necessity for music audio enhancement (referred to as music enhancement from this point onward), involving the transformation of degraded audio recordings into pristine high-quality music, has surged to augment the auditory experience. To address this issue, we propose a music enhancement system based on the Conformer architecture that has demonstrated outstanding performance in speech enhancement tasks. Our approach explores the attention mechanisms of the Conformer and examines their performance to discover the best approach for the music enhancement task. Our experimental results show that our proposed model achieves state-of-the-art performance on single-stem music enhancement. Furthermore, our system can perform general music enhancement with multi-track mixtures, which has not been examined in previous work.
Hybrid noise shaping for audio coding using perfectly overlapped window
- paper_url: http://arxiv.org/abs/2308.12566
- repo_url: None
- paper_authors: Byeongho Jo, Seungkwon Beack
Abstract:
In recent years, audio coding technology has been standardized based on several frameworks that incorporate linear predictive coding (LPC). However, coding the transient signal using frequency-domain LP residual signals remains a challenge. To address this, temporal noise shaping (TNS) can be adapted, although it cannot be effectively operated since the estimated temporal envelope in the modified discrete cosine transform (MDCT) domain is accompanied by the time-domain aliasing (TDA) terms. In this study, we propose the modulated complex lapped transform-based coding framework integrated with transform coded excitation (TCX) and complex LPC-based TNS (CTNS). Our approach uses a 50% overlap window and switching scheme for the CTNS to improve the coding efficiency. Additionally, an adaptive calculation of the target bits for the sub-bands using the frequency envelope information based on the quantized LPC coefficients is proposed. To minimize the quantization mismatch between both modes, an integrated quantization for real and complex values and a TDA augmentation method that compensates for the artificially generated TDA components during switching operations are proposed. The proposed coding framework shows a superior performance in both objective metrics and subjective listening tests, thereby demonstrating its low bit-rate audio coding.
UNISOUND System for VoxCeleb Speaker Recognition Challenge 2023
- paper_url: http://arxiv.org/abs/2308.12526
- repo_url: None
- paper_authors: Yu Zheng, Yajun Zhang, Chuanying Niu, Yibin Zhan, Yanhua Long, Dongxing Xu
Abstract:
This report describes the UNISOUND submission for Track1 and Track2 of VoxCeleb Speaker Recognition Challenge 2023 (VoxSRC 2023). We submit the same system on Track 1 and Track 2, which is trained with only VoxCeleb2-dev. Large-scale ResNet and RepVGG architectures are developed for the challenge. We propose a consistency-aware score calibration method, which leverages the stability of audio voiceprints in similarity score by a Consistency Measure Factor (CMF). CMF brings a huge performance boost in this challenge. Our final system is a fusion of six models and achieves the first place in Track 1 and second place in Track 2 of VoxSRC 2023. The minDCF of our submission is 0.0855 and the EER is 1.5880%.
MultiPA: a multi-task speech pronunciation assessment system for a closed and open response scenario
- paper_url: http://arxiv.org/abs/2308.12490
- repo_url: None
- paper_authors: Yu-Wen Chen, Zhou Yu, Julia Hirschberg
Abstract:
The design of automatic speech pronunciation assessment can be categorized into closed and open response scenarios, each with strengths and limitations. A system with the ability to function in both scenarios can cater to diverse learning needs and provide a more precise and holistic assessment of pronunciation skills. In this study, we propose a Multi-task Pronunciation Assessment model called MultiPA. MultiPA provides an alternative to Kaldi-based systems in that it has simpler format requirements and better compatibility with other neural network models. Compared with previous open response systems, MultiPA provides a wider range of evaluations, encompassing assessments at both the sentence and word-level. Our experimental results show that MultiPA achieves comparable performance when working in closed response scenarios and maintains more robust performance when directly used for open responses.
Attention-Based Acoustic Feature Fusion Network for Depression Detection
- paper_url: http://arxiv.org/abs/2308.12478
- repo_url: https://github.com/xuxiaoooo/abafnet
- paper_authors: Xiao Xu, Yang Wang, Xinru Wei, Fei Wang, Xizhe Zhang
Abstract:
Depression, a common mental disorder, significantly influences individuals and imposes considerable societal impacts. The complexity and heterogeneity of the disorder necessitate prompt and effective detection, which nonetheless, poses a difficult challenge. This situation highlights an urgent requirement for improved detection methods. Exploiting auditory data through advanced machine learning paradigms presents promising research directions. Yet, existing techniques mainly rely on single-dimensional feature models, potentially neglecting the abundance of information hidden in various speech characteristics. To rectify this, we present the novel Attention-Based Acoustic Feature Fusion Network (ABAFnet) for depression detection. ABAFnet combines four different acoustic features into a comprehensive deep learning model, thereby effectively integrating and blending multi-tiered features. We present a novel weight adjustment module for late fusion that boosts performance by efficaciously synthesizing these features. The effectiveness of our approach is confirmed via extensive validation on two clinical speech databases, CNRAC and CS-NRAC, thereby outperforming previous methods in depression detection and subtype classification. Further in-depth analysis confirms the key role of each feature and highlights the importance of MFCCrelated features in speech-based depression detection.
An Initial Exploration: Learning to Generate Realistic Audio for Silent Video
- paper_url: http://arxiv.org/abs/2308.12408
- repo_url: None
- paper_authors: Matthew Martel, Jackson Wagner
Abstract:
Generating realistic audio effects for movies and other media is a challenging task that is accomplished today primarily through physical techniques known as Foley art. Foley artists create sounds with common objects (e.g., boxing gloves, broken glass) in time with video as it is playing to generate captivating audio tracks. In this work, we aim to develop a deep-learning based framework that does much the same - observes video in it’s natural sequence and generates realistic audio to accompany it. Notably, we have reason to believe this is achievable due to advancements in realistic audio generation techniques conditioned on other inputs (e.g., Wavenet conditioned on text). We explore several different model architectures to accomplish this task that process both previously-generated audio and video context. These include deep-fusion CNN, dilated Wavenet CNN with visual context, and transformer-based architectures. We find that the transformer-based architecture yields the most promising results, matching low-frequencies to visual patterns effectively, but failing to generate more nuanced waveforms.
AdVerb: Visually Guided Audio Dereverberation
- paper_url: http://arxiv.org/abs/2308.12370
- repo_url: None
- paper_authors: Sanjoy Chowdhury, Sreyan Ghosh, Subhrajyoti Dasgupta, Anton Ratnarajah, Utkarsh Tyagi, Dinesh Manocha
Abstract:
We present AdVerb, a novel audio-visual dereverberation framework that uses visual cues in addition to the reverberant sound to estimate clean audio. Although audio-only dereverberation is a well-studied problem, our approach incorporates the complementary visual modality to perform audio dereverberation. Given an image of the environment where the reverberated sound signal has been recorded, AdVerb employs a novel geometry-aware cross-modal transformer architecture that captures scene geometry and audio-visual cross-modal relationship to generate a complex ideal ratio mask, which, when applied to the reverberant audio predicts the clean sound. The effectiveness of our method is demonstrated through extensive quantitative and qualitative evaluations. Our approach significantly outperforms traditional audio-only and audio-visual baselines on three downstream tasks: speech enhancement, speech recognition, and speaker verification, with relative improvements in the range of 18% - 82% on the LibriSpeech test-clean set. We also achieve highly satisfactory RT60 error scores on the AVSpeech dataset.
LCANets++: Robust Audio Classification using Multi-layer Neural Networks with Lateral Competition
- paper_url: http://arxiv.org/abs/2308.12882
- repo_url: None
- paper_authors: Sayanton V. Dibbo, Juston S. Moore, Garrett T. Kenyon, Michael A. Teti
Abstract:
Audio classification aims at recognizing audio signals, including speech commands or sound events. However, current audio classifiers are susceptible to perturbations and adversarial attacks. In addition, real-world audio classification tasks often suffer from limited labeled data. To help bridge these gaps, previous work developed neuro-inspired convolutional neural networks (CNNs) with sparse coding via the Locally Competitive Algorithm (LCA) in the first layer (i.e., LCANets) for computer vision. LCANets learn in a combination of supervised and unsupervised learning, reducing dependency on labeled samples. Motivated by the fact that auditory cortex is also sparse, we extend LCANets to audio recognition tasks and introduce LCANets++, which are CNNs that perform sparse coding in multiple layers via LCA. We demonstrate that LCANets++ are more robust than standard CNNs and LCANets against perturbations, e.g., background noise, as well as black-box and white-box attacks, e.g., evasion and fast gradient sign (FGSM) attacks.