cs.AI - 2023-11-09

Is a Seat at the Table Enough? Engaging Teachers and Students in Dataset Specification for ML in Education

  • paper_url: http://arxiv.org/abs/2311.05792
  • repo_url: None
  • paper_authors: Mei Tan, Hansol Lee, Dakuo Wang, Hariharan Subramonyam
  • for: 这篇论文目的是探讨Machine Learning(ML)在教育中的应用,并探讨在这些应用中发生的问题和挑战。
  • methods: 本研究使用了跨学科的合作设计方法,让ML工程师、教育专家和学生共同定义数据特性,以探讨ML应用中的问题和挑战。
  • results: 研究发现,参与者将数据 Contextualized 基于专业和程序知识,设计了减少后果和数据可靠性担忧的数据需求。参与者还展现出了角色基于的协力策略和贡献模式。此外,为了实现真正的参与,ML的实现需要结构支持:定义的迭代和共评过程、共同标准、技术和非技术参与者 traverse 专业边界的信息架。
    Abstract Despite the promises of ML in education, its adoption in the classroom has surfaced numerous issues regarding fairness, accountability, and transparency, as well as concerns about data privacy and student consent. A root cause of these issues is the lack of understanding of the complex dynamics of education, including teacher-student interactions, collaborative learning, and classroom environment. To overcome these challenges and fully utilize the potential of ML in education, software practitioners need to work closely with educators and students to fully understand the context of the data (the backbone of ML applications) and collaboratively define the ML data specifications. To gain a deeper understanding of such a collaborative process, we conduct ten co-design sessions with ML software practitioners, educators, and students. In the sessions, teachers and students work with ML engineers, UX designers, and legal practitioners to define dataset characteristics for a given ML application. We find that stakeholders contextualize data based on their domain and procedural knowledge, proactively design data requirements to mitigate downstream harms and data reliability concerns, and exhibit role-based collaborative strategies and contribution patterns. Further, we find that beyond a seat at the table, meaningful stakeholder participation in ML requires structured supports: defined processes for continuous iteration and co-evaluation, shared contextual data quality standards, and information scaffolds for both technical and non-technical stakeholders to traverse expertise boundaries.
    摘要 尽管机器学习(ML)在教育领域的推广已经浮出了许多公平、负责任、透明度和隐私等问题,以及学生同意的问题。这些问题的根本原因是对教育领域的复杂 Dynamics 的不了解,包括教师和学生之间的互动、合作学习和教室环境。为了解决这些挑战并充分利用ML在教育领域的潜力,软件实践者需要与教育工作者和学生合作,以全面理解数据(ML应用程序的核心)的上下文。为了更深入地理解这种合作过程,我们进行了10次codesign会议,参与者包括ML软件实践者、教育工作者和学生。在会议中,教师和学生与ML工程师、用户体验设计师和法律专业人士一起定义了ML应用程序的数据特征。我们发现,参与者会基于域知识和过程知识来Contextualize数据,预先设计数据要求以避免下游害处和数据可靠性问题,并表现出角色基于的协作策略和贡献模式。此外,我们发现,在ML中真正参与的参与者需要结构支持:定义的不断迭代和合评过程,共享 Contextual Data Quality Standards,以及技术和非技术参与者之间的信息扶持,以 traverse Expertise boundaries。

The Paradox of Noise: An Empirical Study of Noise-Infusion Mechanisms to Improve Generalization, Stability, and Privacy in Federated Learning

  • paper_url: http://arxiv.org/abs/2311.05790
  • repo_url: None
  • paper_authors: Elaheh Jafarigol, Theodore Trafalis
  • For: This paper aims to provide strategies for measuring the generalization, stability, and privacy-preserving capabilities of deep learning models in federated learning frameworks, and to improve these models by leveraging noise as a tool for regularization and privacy enhancement.* Methods: The paper explores five noise infusion mechanisms at varying noise levels within centralized and federated learning settings, and compares the performance of three Convolutional Neural Network (CNN) architectures. The paper also introduces a new quantitative measure called Signal-to-Noise Ratio (SNR) to evaluate the trade-off between privacy and training accuracy of noise-infused models.* Results: The paper finds that the optimal noise level for privacy and accuracy can be achieved through a delicate balance between these factors, and defines the Price of Stability and Price of Anarchy in the context of privacy-preserving deep learning. The research contributes to the development of robust, privacy-aware algorithms that prioritize both utility and privacy in AI-driven solutions.
    Abstract In a data-centric era, concerns regarding privacy and ethical data handling grow as machine learning relies more on personal information. This empirical study investigates the privacy, generalization, and stability of deep learning models in the presence of additive noise in federated learning frameworks. Our main objective is to provide strategies to measure the generalization, stability, and privacy-preserving capabilities of these models and further improve them. To this end, five noise infusion mechanisms at varying noise levels within centralized and federated learning settings are explored. As model complexity is a key component of the generalization and stability of deep learning models during training and evaluation, a comparative analysis of three Convolutional Neural Network (CNN) architectures is provided. The paper introduces Signal-to-Noise Ratio (SNR) as a quantitative measure of the trade-off between privacy and training accuracy of noise-infused models, aiming to find the noise level that yields optimal privacy and accuracy. Moreover, the Price of Stability and Price of Anarchy are defined in the context of privacy-preserving deep learning, contributing to the systematic investigation of the noise infusion strategies to enhance privacy without compromising performance. Our research sheds light on the delicate balance between these critical factors, fostering a deeper understanding of the implications of noise-based regularization in machine learning. By leveraging noise as a tool for regularization and privacy enhancement, we aim to contribute to the development of robust, privacy-aware algorithms, ensuring that AI-driven solutions prioritize both utility and privacy.
    摘要 在数据驱动时代,隐私和优化数据处理的问题日益突出,特别是机器学习更加依赖人工智能技术。这项实证研究探讨了深度学习模型在联合学习框架中的隐私、泛化和稳定性,并提供了测量和改进这些模型的策略。为此,我们在中央化和联合学习Setting中调查了5种不同噪声扩散机制,并对三种卷积神经网络架构进行比较分析。在训练和评估过程中,模型复杂度是深度学习模型的泛化和稳定性的关键因素。我们还引入了噪声比例(SNR)作为衡量隐私和训练准确率之间的质量衡量,以找到最佳的噪声水平。此外,我们定义了隐私保护中的价格of Stability和Price of Anarchy,以系统地研究噪声扩散策略的影响。我们的研究探讨了这些关键因素之间的权衡,以便更好地理解噪声基于的正则化在机器学习中的影响。通过利用噪声作为正则化和隐私提高的工具,我们希望通过开发robust、隐私意识的算法,确保人工智能驱动的解决方案优先考虑隐私和实用性。

Are “Hierarchical” Visual Representations Hierarchical?

  • paper_url: http://arxiv.org/abs/2311.05784
  • repo_url: https://github.com/ethanlshen/hiernet
  • paper_authors: Ethan Shen, Ali Farhadi, Aditya Kusupati
  • for: 本研究旨在研究是否使用层次视图表示法(Hierarchical Visual Representations)可以更好地捕捉人类对visual world的层次结构认知。
  • methods: 作者创建了一个名为HierNet的12个 dataset集合,包括ImageNet BREEDs subsets中的3种层次结构。他们在不同的训练setup中评估了抽象表示法和马特瑞什表示法的性能,并结论这些表示法不能在捕捉层次结构方面提供更好的性能,但它们可以帮助提高搜索效率和解释性。
  • results: 研究结果表明,使用抽象表示法和马特瑞什表示法不能在捕捉层次结构方面提供更好的性能,但它们可以帮助提高搜索效率和解释性。
    Abstract Learned visual representations often capture large amounts of semantic information for accurate downstream applications. Human understanding of the world is fundamentally grounded in hierarchy. To mimic this and further improve representation capabilities, the community has explored "hierarchical" visual representations that aim at modeling the underlying hierarchy of the visual world. In this work, we set out to investigate if hierarchical visual representations truly capture the human perceived hierarchy better than standard learned representations. To this end, we create HierNet, a suite of 12 datasets spanning 3 kinds of hierarchy from the BREEDs subset of ImageNet. After extensive evaluation of Hyperbolic and Matryoshka Representations across training setups, we conclude that they do not capture hierarchy any better than the standard representations but can assist in other aspects like search efficiency and interpretability. Our benchmark and the datasets are open-sourced at https://github.com/ethanlshen/HierNet.
    摘要 学习的视觉表示法经常捕捉大量的Semantic信息,以便在下游应用中进行准确的识别。人类对世界的理解是基于层次结构的。为了模仿这一点并进一步提高表示能力,社区已经探索了“层次”的视觉表示方法,旨在模型视觉世界的层次结构。在这项工作中,我们想要Investigate whether hierarchical visual representations truly capture the human-perceived hierarchy better than standard learned representations. To this end, we create HierNet, a suite of 12 datasets spanning 3 kinds of hierarchy from the BREEDs subset of ImageNet. After extensive evaluation of Hyperbolic and Matryoshka Representations across training setups, we conclude that they do not capture hierarchy any better than the standard representations but can assist in other aspects like search efficiency and interpretability. Our benchmark and the datasets are open-sourced at .Here's a word-for-word translation of the text into Simplified Chinese:学习的视觉表示法经常捕捉大量的Semantic信息,以便在下游应用中进行准确的识别。人类对世界的理解是基于层次结构的。为了模仿这一点并进一步提高表示能力,社区已经探索了“层次”的视觉表示方法,旨在模型视觉世界的层次结构。在这项工作中,我们想要Investigate whether hierarchical visual representations truly capture the human-perceived hierarchy better than standard learned representations. To this end, we create HierNet, a suite of 12 datasets spanning 3 kinds of hierarchy from the BREEDs subset of ImageNet. After extensive evaluation of Hyperbolic and Matryoshka Representations across training setups, we conclude that they do not capture hierarchy any better than the standard representations but can assist in other aspects like search efficiency and interpretability. Our benchmark and the datasets are open-sourced at .

Hallucination-minimized Data-to-answer Framework for Financial Decision-makers

  • paper_url: http://arxiv.org/abs/2311.07592
  • repo_url: None
  • paper_authors: Sohini Roychowdhury, Andres Alvarez, Brian Moore, Marko Krema, Maria Paz Gelpi, Federico Martin Rodriguez, Angel Rodriguez, Jose Ramon Cabrejas, Pablo Martinez Serrano, Punit Agrawal, Arijit Mukherjee
  • for: 这项研究旨在开发一种基于 Langchain 框架的自动化问答系统,以提高在金融决策等特定领域中的问答自动化。
  • methods: 该系统使用用户查询意图分类、自动检索相关数据片断、生成个性化 LLG 提示、多 metric 评分等方法来提供准确、有 confidence 的答案。
  • results: 该系统在多种用户查询回答中达到了90%以上的 confidence 分数,包括 {What, Where, Why, How, predict, trend, anomalies, exceptions} 等关键问题,这些问题对于金融决策应用程序是非常重要的。
    Abstract Large Language Models (LLMs) have been applied to build several automation and personalized question-answering prototypes so far. However, scaling such prototypes to robust products with minimized hallucinations or fake responses still remains an open challenge, especially in niche data-table heavy domains such as financial decision making. In this work, we present a novel Langchain-based framework that transforms data tables into hierarchical textual data chunks to enable a wide variety of actionable question answering. First, the user-queries are classified by intention followed by automated retrieval of the most relevant data chunks to generate customized LLM prompts per query. Next, the custom prompts and their responses undergo multi-metric scoring to assess for hallucinations and response confidence. The proposed system is optimized with user-query intention classification, advanced prompting, data scaling capabilities and it achieves over 90% confidence scores for a variety of user-queries responses ranging from {What, Where, Why, How, predict, trend, anomalies, exceptions} that are crucial for financial decision making applications. The proposed data to answers framework can be extended to other analytical domains such as sales and payroll to ensure optimal hallucination control guardrails.
    摘要 首先,用户问题被分类为意图,然后自动检索最相关的数据块,以生成个性化的LLM提醒。接着,个性提醒和其响应进行多元指标评分,以评估幻觉和响应信心。我们的提议的系统具有用户问题意图分类、高级提醒、数据扩展能力,并实现了90%以上的信心分数,包括“What、Where、Why、How、预测、趋势、异常”等问题,这些问题对金融决策应用非常重要。我们的数据回答框架可以扩展到其他分析领域,如销售和薪资,以确保优化幻觉控制 guardrails。

DONUT-hole: DONUT Sparsification by Harnessing Knowledge and Optimizing Learning Efficiency

  • paper_url: http://arxiv.org/abs/2311.05778
  • repo_url: None
  • paper_authors: Azhar Shaikh, Michael Cochez, Denis Diachkov, Michiel de Rijcke, Sahar Yousefi
  • for: 这篇论文旨在提出一种快速、高效的视觉文档理解(VDU)模型,以解决先前模型DONUT的限制。
  • methods: 该模型使用变换器架构,并通过知识储存和模型剪割来优化性能。
  • results: 模型可以在大规模请求服务环境中减少内存和计算需求,同时保持性能。此外,模型在文档图像关键信息提取任务中的效果也得到了证明。
    Abstract This paper introduces DONUT-hole, a sparse OCR-free visual document understanding (VDU) model that addresses the limitations of its predecessor model, dubbed DONUT. The DONUT model, leveraging a transformer architecture, overcoming the challenges of separate optical character recognition (OCR) and visual semantic understanding (VSU) components. However, its deployment in production environments and edge devices is hindered by high memory and computational demands, particularly in large-scale request services. To overcome these challenges, we propose an optimization strategy based on knowledge distillation and model pruning. Our paradigm to produce DONUT-hole, reduces the model denisty by 54\% while preserving performance. We also achieve a global representational similarity index between DONUT and DONUT-hole based on centered kernel alignment (CKA) metric of 0.79. Moreover, we evaluate the effectiveness of DONUT-hole in the document image key information extraction (KIE) task, highlighting its potential for developing more efficient VDU systems for logistic companies.
    摘要

Chatbots Are Not Reliable Text Annotators

  • paper_url: http://arxiv.org/abs/2311.05769
  • repo_url: https://github.com/centre-for-humanities-computing/llm-tweet-classification
  • paper_authors: Ross Deans Kristensen-McLachlan, Miceal Canavan, Márton Kardos, Mia Jacobsen, Lene Aarøe
  • for: 这项研究旨在评估开源大语言模型(LLM)的表现,以及与聊天GPT的比较,以找到更好的文本标注工具。
  • methods: 研究使用了多种开源大语言模型(LLM),以及标准的指导学习分类模型,对Twitter媒体中的简单二分文本标注任务进行了系统性比较评估。
  • results: 研究发现,与标准指导学习分类模型相比,聊天GPT在多个任务中表现不一致,而开源模型在不同任务中也存在差异。因此,建议在社会科学研究中不要使用聊天GPT进行重要的文本标注任务。
    Abstract Recent research highlights the significant potential of ChatGPT for text annotation in social science research. However, ChatGPT is a closed-source product which has major drawbacks with regards to transparency, reproducibility, cost, and data protection. Recent advances in open-source (OS) large language models (LLMs) offer alternatives which remedy these challenges. This means that it is important to evaluate the performance of OS LLMs relative to ChatGPT and standard approaches to supervised machine learning classification. We conduct a systematic comparative evaluation of the performance of a range of OS LLM models alongside ChatGPT, using both zero- and few-shot learning as well as generic and custom prompts, with results compared to more traditional supervised classification models. Using a new dataset of Tweets from US news media, and focusing on simple binary text annotation tasks for standard social science concepts, we find significant variation in the performance of ChatGPT and OS models across the tasks, and that supervised classifiers consistently outperform both. Given the unreliable performance of ChatGPT and the significant challenges it poses to Open Science we advise against using ChatGPT for substantive text annotation tasks in social science research.
    摘要 近期研究发现 chatGPT 在社会科学研究中的潜在潜力很大,但 chatGPT 是一个关闭源产品,它在透明度、复制性、成本和数据安全方面存在重大缺点。现有的开源大语言模型(LLM)的进步提供了一些选择,这些选择可以解决这些挑战。因此,我们需要评估开源 LLM 模型与 chatGPT 和普通的指导学习分类模型相比的性能。我们使用了一个新的 Twitter 数据集,并使用零或几个预测任务来评估开源 LLM 模型和 chatGPT 的性能,结果与传统的指导学习分类模型相比。我们发现了不同任务的 chatGPT 和开源模型的性能变化,以及指导分类模型在所有任务上的一致性。由于 chatGPT 的不可靠性和开源科学的重要性,我们建议在社会科学研究中不要使用 chatGPT 进行重要的文本注释任务。

ShipGen: A Diffusion Model for Parametric Ship Hull Generation with Multiple Objectives and Constraints

  • paper_url: http://arxiv.org/abs/2311.06315
  • repo_url: None
  • paper_authors: Noah J. Bagazinski, Faez Ahmed
  • for: 这个论文的目的是寻找一种使用生成人工智能技术来改善船体设计的方法,以减少设计周期时间和创造高性能的船体设计。
  • methods: 这个论文使用了一种叫做Diffusion Model的生成人工智能模型,并且添加了一些指南来改善生成的船体设计质量。
  • results: 这个论文发现使用Diffusion Model生成 parametric 船体设计可以大幅减少设计周期时间,并且生成的船体设计具有低Drag和高积载量,这可以降低船运成本和增加船体的收益能力。
    Abstract Ship design is a years-long process that requires balancing complex design trade-offs to create a ship that is efficient and effective. Finding new ways to improve the ship design process can lead to significant cost savings for ship building and operation. One promising technology is generative artificial intelligence, which has been shown to reduce design cycle time and create novel, high-performing designs. In literature review, generative artificial intelligence has been shown to generate ship hulls; however, ship design is particularly difficult as the hull of a ship requires the consideration of many objectives. This paper presents a study on the generation of parametric ship hull designs using a parametric diffusion model that considers multiple objectives and constraints for the hulls. This denoising diffusion probabilistic model (DDPM) generates the tabular parametric design vectors of a ship hull for evaluation. In addition to a tabular DDPM, this paper details adding guidance to improve the quality of generated ship hull designs. By leveraging classifier guidance, the DDPM produced feasible parametric ship hulls that maintain the coverage of the initial training dataset of ship hulls with a 99.5% rate, a 149x improvement over random sampling of the design vector parameters across the design space. Parametric ship hulls produced with performance guidance saw an average of 91.4% reduction in wave drag coefficients and an average of a 47.9x relative increase in the total displaced volume of the hulls compared to the mean performance of the hulls in the training dataset. The use of a DDPM to generate parametric ship hulls can reduce design time by generating high-performing hull designs for future analysis. These generated hulls have low drag and high volume, which can reduce the cost of operating a ship and increase its potential to generate revenue.
    摘要 船体设计是一个需要坚持多年的过程,旨在平衡多种设计费用来创造高效高性能的船体。发现新的方法可以改进船体设计过程,可以获得显著的成本节省和运营成本降低。一种潜在技术是生成人工智能,它已经在文献评议中显示出可以降低设计周期时间和创造高性能的船体设计。在这篇论文中,我们介绍了一种基于梯度扩散模型(DDPM)的 parametric 船体设计生成方法,该方法考虑了多个目标和约束,以生成船体的 tabular 参数设计 вектор。此外,我们还介绍了如何通过类ifier 指导来改进生成的船体设计质量。通过利用类ifier 指导,DDPM 生成的 parametric 船体设计可以保持训练数据集中船体的覆盖率达99.5%,相比随机样本设计参数的149倍提高。 Parametric 船体生成后,通过性能指导,船体的波浪阻力系数平均下降91.4%,同时总填充体积平均提高47.9倍。通过使用 DDPM 生成 parametric 船体设计,可以减少设计时间,并生成高性能的船体设计,以便将来的分析。这些生成的船体设计具有低阻力和高体积,可以降低船舶运营成本并增加收益可能性。

Deep Natural Language Feature Learning for Interpretable Prediction

  • paper_url: http://arxiv.org/abs/2311.05754
  • repo_url: https://github.com/furrutiav/nllf-emnlp-2023
  • paper_authors: Felipe Urrutia, Cristian Buc, Valentin Barriere
  • for: 这个研究的目的是如何将复杂任务分解成一系列更容易处理的子任务,以便更好地进行 Machine Learning 模型的训练。
  • methods: 这种方法使用一个小型的 transformer 语言模型(如 BERT),通过自动从 Large Language Model (LLM) 中获取的弱标签进行 Natural Language Inference (NLI) 训练,生成一个名为 Natural Language Learned Features (NLLF) 的表示。
  • results: 研究表明,使用这种方法可以达到更好的性能,并且可以在零 shot 推理中处理任何 binary question。此外,这种 NLLF 表示可以作为一个简单的机器学习模型的输入,如一棵决策树,以便更好地解释模型的决策。在两个完全不同的任务中,即检测学生们的答案不一致性和检索报告中的科学论文,这种方法都有成功应用。
    Abstract We propose a general method to break down a main complex task into a set of intermediary easier sub-tasks, which are formulated in natural language as binary questions related to the final target task. Our method allows for representing each example by a vector consisting of the answers to these questions. We call this representation Natural Language Learned Features (NLLF). NLLF is generated by a small transformer language model (e.g., BERT) that has been trained in a Natural Language Inference (NLI) fashion, using weak labels automatically obtained from a Large Language Model (LLM). We show that the LLM normally struggles for the main task using in-context learning, but can handle these easiest subtasks and produce useful weak labels to train a BERT. The NLI-like training of the BERT allows for tackling zero-shot inference with any binary question, and not necessarily the ones seen during the training. We show that this NLLF vector not only helps to reach better performances by enhancing any classifier, but that it can be used as input of an easy-to-interpret machine learning model like a decision tree. This decision tree is interpretable but also reaches high performances, surpassing those of a pre-trained transformer in some cases.We have successfully applied this method to two completely different tasks: detecting incoherence in students' answers to open-ended mathematics exam questions, and screening abstracts for a systematic literature review of scientific papers on climate change and agroecology.
    摘要 我们提出了一种通用方法,将主要复杂任务分解成一系列更容易的子任务,这些子任务是通过自然语言表述为主要目标任务的 binary 问题。我们称这种表示为自然语言学习特征(NLLF)。NLLF 由一个小型 transformer 语言模型(如 BERT)生成,该模型在自然语言推理(NLI)方式下进行训练,使用大语言模型(LLM)自动生成的弱标签。我们发现,LLM 通常在主任务上使用上下文学习时陷入困难,但可以处理最简单的子任务,并生成有用的弱标签来训练 BERT。 NLI 类似的训练方法使得 BERT 可以面对零批学习任务,而不一定是在训练过程中看到的问题。我们发现,这个 NLLF 向量不仅能够提高任何分类器的性能,还可以作为一个易于解释的机器学习模型,如决策树的输入。这个决策树可以是解释性强,但也能够达到高性能,在某些情况下 even surpassing 预训练 transformer 的性能。我们成功地应用了这种方法到了两个完全不同的任务:评估学生回答开放式数学考试题的准确性,以及筛选报告系统科学期刊文章中的气候变化和农业生物学相关研究。

Bridging the Digital Divide: Performance Variation across Socio-Economic Factors in Vision-Language Models

  • paper_url: http://arxiv.org/abs/2311.05746
  • repo_url: https://github.com/michigannlp/bridging_the_digital_divide
  • paper_authors: Joan Nwatu, Oana Ignat, Rada Mihalcea
  • for: 本研究旨在评估当今AI模型在不同收入水平下的表现,并提出解决方案来减轻收入差距。
  • methods: 本研究使用最新的视觉语言模型(CLIP),在各国家和不同收入水平下收集了家庭图像,并对这些图像进行了不同主题的识别和分类。
  • results: 研究发现,不同收入水平下的家庭图像识别性能存在差异,贫困家庭的表现相对较差,而富裕家庭的表现相对较高。研究还提出了一些可能的解决方案。
    Abstract Despite the impressive performance of current AI models reported across various tasks, performance reports often do not include evaluations of how these models perform on the specific groups that will be impacted by these technologies. Among the minority groups under-represented in AI, data from low-income households are often overlooked in data collection and model evaluation. We evaluate the performance of a state-of-the-art vision-language model (CLIP) on a geo-diverse dataset containing household images associated with different income values (Dollar Street) and show that performance inequality exists among households of different income levels. Our results indicate that performance for the poorer groups is consistently lower than the wealthier groups across various topics and countries. We highlight insights that can help mitigate these issues and propose actionable steps for economic-level inclusive AI development. Code is available at https://github.com/MichiganNLP/Bridging_the_Digital_Divide.
    摘要 尽管当前的人工智能模型在各种任务上表现出色,但性能报告 часто不包括对特定群体的评估。在人工智能中下 represented minority groups中,来自低收入家庭的数据经常被数据收集和模型评估排除。我们使用地理多样化的数据集(Dollar Street)和当前领域的视觉语言模型(CLIP)进行评估,并发现了收入水平不同的家庭表现不平等。我们的结果表明,贫困 GROUPS的表现逐串比较贫困 GROUPS across topics and countries. We highlight some insights that can help mitigate these issues and propose actionable steps for economic-level inclusive AI development. 代码可以在 https://github.com/MichiganNLP/Bridging_the_Digital_Divide 上获取。

Optimal simulation-based Bayesian decisions

  • paper_url: http://arxiv.org/abs/2311.05742
  • repo_url: None
  • paper_authors: Justin Alsing, Thomas D. P. Edwards, Benjamin Wandelt
  • for: Optimal Bayesian decisions under intractable likelihoods
  • methods: 学习一个surrogate模型,用于计算行动空间和数据空间下的预期Utility的函数
  • results: 实现了高效的 simulations,typically requiring fewer model calls than posterior inference task alone, and a factor of $100-1000$ more efficient than Monte-Carlo based methods.
    Abstract We present a framework for the efficient computation of optimal Bayesian decisions under intractable likelihoods, by learning a surrogate model for the expected utility (or its distribution) as a function of the action and data spaces. We leverage recent advances in simulation-based inference and Bayesian optimization to develop active learning schemes to choose where in parameter and action spaces to simulate. This allows us to learn the optimal action in as few simulations as possible. The resulting framework is extremely simulation efficient, typically requiring fewer model calls than the associated posterior inference task alone, and a factor of $100-1000$ more efficient than Monte-Carlo based methods. Our framework opens up new capabilities for performing Bayesian decision making, particularly in the previously challenging regime where likelihoods are intractable, and simulations expensive.
    摘要 我们提出了一个框架,用于高效计算 bayesian 决策下最优的决策,当likelihood是不可处理的时候,我们通过学习一个surrogate模型来表示行动和数据空间中的期望收益(或其分布)。我们利用最近的 simulations-based inference和 Bayesian optimization技术,开发了一种活动学习方案,选择在参数和行动空间中进行模拟。这使得我们可以尽可能快地学习最优的行动。结果的框架非常的 simulation efficient,通常需要 fewer model calls than相关的 posterior inference 任务,并且比 Monte-Carlo 方法高效 $100-1000$ 倍。我们的框架开 up new capabilities for performing Bayesian decision making,特别是在 previously challenging 的likelihood是 intractable,并且 simulations expensive 的情况下。

Efficiently Adapting Pretrained Language Models To New Languages

  • paper_url: http://arxiv.org/abs/2311.05741
  • repo_url: None
  • paper_authors: Zoltan Csaki, Pian Pawakapan, Urmish Thakker, Qiantong Xu
  • for: 这个研究旨在将现有的预训练语言模型(LLM)高效地适应新语言,以提高模型在低资源语言上的表现。
  • methods: 我们提出了一种新的适应方法,包括增加目标语言中的新token,并调整资料混合比例以减轻忘记现象。
  • results: 我们的实验显示,这种适应方法可以在适应英语到匈牙利语和泰语时,实现更好的表现,并且仅对英语造成最小的回退。
    Abstract Recent large language models (LLM) exhibit sub-optimal performance on low-resource languages, as the training data of these models is usually dominated by English and other high-resource languages. Furthermore, it is challenging to train models for low-resource languages, especially from scratch, due to a lack of high quality training data. Adapting pretrained LLMs reduces the need for data in the new language while also providing cross lingual transfer capabilities. However, naively adapting to new languages leads to catastrophic forgetting and poor tokenizer efficiency. In this work, we study how to efficiently adapt any existing pretrained LLM to a new language without running into these issues. In particular, we improve the encoding efficiency of the tokenizer by adding new tokens from the target language and study the data mixing recipe to mitigate forgetting. Our experiments on adapting an English LLM to Hungarian and Thai show that our recipe can reach better performance than open source models on the target language, with minimal regressions on English.
    摘要 最近的大型语言模型(LLM)在低资源语言上表现不佳,因为这些模型的训练数据通常受英语和其他高资源语言的影响。此外,为低资源语言提供模型训练是困难的,特别是从零开始。适应预训练LLM可以减少新语言的数据需求,同时提供跨语言传递能力。然而,直接适应新语言会导致忘记和词元效率低下。在这项工作中,我们研究如何有效地适应任何现有的预训练LLM到新语言,而不会遇到这些问题。我们改进了编码效率的词元,添加了目标语言中的新词,并研究了数据混合秘诀来缓解忘记。我们的实验在将英语模型适应到匈牙利语和泰语时,发现我们的秘诀可以在目标语言上达到更好的性能,与英语表现的减少 regression。

Generating Pragmatic Examples to Train Neural Program Synthesizers

  • paper_url: http://arxiv.org/abs/2311.05740
  • repo_url: https://github.com/saujasv/generating-pragmatic-examples
  • paper_authors: Saujas Vaduguru, Daniel Fried, Yewen Pu
  • for: 这篇论文的目的是提出一种基于神经网络的程序合成方法,以便在实际程序空间中实现更高效的程序合成。
  • methods: 该方法包括在自动学习模型中采样对应的程序和示例,并使用 Pragmatic Inference 来选择有用的训练示例。
  • results: 该方法在 Synthesizing 正则表达式从示例字符串中的任务上表现出色,比模型不选择 Pragmatic 示例的情况高出 23%(相对提高 51%),并与人工提供的 Pragmatic 示例集上的性能相当,无需使用人工数据进行训练。
    Abstract Programming-by-example is the task of synthesizing a program that is consistent with a set of user-provided input-output examples. As examples are often an under-specification of one's intent, a good synthesizer must choose the intended program from the many that are consistent with the given set of examples. Prior work frames program synthesis as a cooperative game between a listener (that synthesizes programs) and a speaker (a user choosing examples), and shows that models of computational pragmatic inference are effective in choosing the user intended programs. However, these models require counterfactual reasoning over a large set of programs and examples, which is infeasible in realistic program spaces. In this paper, we propose a novel way to amortize this search with neural networks. We sample pairs of programs and examples via self-play between listener and speaker models, and use pragmatic inference to choose informative training examples from this sample.We then use the informative dataset to train models to improve the synthesizer's ability to disambiguate user-provided examples without human supervision. We validate our method on the challenging task of synthesizing regular expressions from example strings, and find that our method (1) outperforms models trained without choosing pragmatic examples by 23% (a 51% relative increase) (2) matches the performance of supervised learning on a dataset of pragmatic examples provided by humans, despite using no human data in training.
    摘要 程序编程例子是将一个程序与一组用户提供的输入输出示例进行一一匹配的任务。由于示例通常是一个下pecification of one's intent,因此一个好的合成器必须从一个大量的程序和示例中选择用户所意图的程序。以前的工作将程序合成视为一个合作游戏 между一个听众(合成程序)和一个说客(用户选择示例),并证明了计算机 Pragmatic inference 模型有效地选择用户所意图的程序。然而,这些模型需要计算机 Pragmatic inference 的对偶推理,这在实际的程序空间中是不可能的。在这篇文章中,我们提出了一种新的方法,使用神经网络来免费化这个搜索。我们通过自我玩家和听众模型之间的自动对话来采样对应的程序和示例,然后使用 Pragmatic inference 选择这些示例中最有用的训练示例。我们使用这些有用的示例来训练模型,以提高合成器对用户提供的示例的解释能力,无需人工指导。我们验证了我们的方法在生成正则表达式的任务中的效果,并发现我们的方法(1)在没有人工指导的情况下,比模型没有选择 Pragmatic examples 的情况下高出23%(相对提高51%)。(2)与人工提供的 Pragmatic examples 数据集上的超级学习相当,即使在没有人工数据的情况下。

Long-Horizon Dialogue Understanding for Role Identification in the Game of Avalon with Large Language Models

  • paper_url: http://arxiv.org/abs/2311.05720
  • repo_url: https://github.com/sstepput/Avalon-NLU
  • paper_authors: Simon Stepputtis, Joseph Campbell, Yaqi Xie, Zhengyang Qi, Wenxin Sharon Zhang, Ruiyi Wang, Sanketh Rangreji, Michael Lewis, Katia Sycara
  • for: 这 paper 是 investigate 当前大语言模型 (LLM) 在长期对话中对骗局和说服的能力,特别是在多方参与者的情况下。
  • methods: 这 paper 使用了 Avalon: The Resistance 游戏作为研究对象, introduce 了一个在线测试床和20个人类玩家的数据集,以及一种 multimodal 集成方法,以检验 LLM 在长期对话中的决策和语言处理能力。
  • results: 研究发现,even 当前的状态对技术 LLM 还没有达到人类性能水平,这使得这个数据集成为一个有力的比较标准,以 Investigate LLM 的决策和语言处理能力。
    Abstract Deception and persuasion play a critical role in long-horizon dialogues between multiple parties, especially when the interests, goals, and motivations of the participants are not aligned. Such complex tasks pose challenges for current Large Language Models (LLM) as deception and persuasion can easily mislead them, especially in long-horizon multi-party dialogues. To this end, we explore the game of Avalon: The Resistance, a social deduction game in which players must determine each other's hidden identities to complete their team's objective. We introduce an online testbed and a dataset containing 20 carefully collected and labeled games among human players that exhibit long-horizon deception in a cooperative-competitive setting. We discuss the capabilities of LLMs to utilize deceptive long-horizon conversations between six human players to determine each player's goal and motivation. Particularly, we discuss the multimodal integration of the chat between the players and the game's state that grounds the conversation, providing further insights into the true player identities. We find that even current state-of-the-art LLMs do not reach human performance, making our dataset a compelling benchmark to investigate the decision-making and language-processing capabilities of LLMs. Our dataset and online testbed can be found at our project website: https://sstepput.github.io/Avalon-NLU/
    摘要 <> traduced text into Simplified Chinese.<>骗取和说服在多方对话中扮演了关键角色,特别是当参与者的利益、目标和动机不匹配时。这些复杂任务对当今大型自然语言模型(LLM) poses 挑战,因为骗取和说服可以轻松地误导它们,特别在长期多方对话中。为此,我们研究了《阿凡龙:抵抗》游戏,这是一款社交推理游戏,玩家需要确定对方的隐藏身份,以完成团队的目标。我们提供了在线测试床和20个精心收集和标注的游戏,这些游戏展示了长期骗取的例子。我们讨论了使用现有的 LLM Utilize deceptive long-horizon conversations between six human players to determine each player's goal and motivation。尤其是通过融合对话和游戏状态的多模式集成,提供了更多的真实player identity的预测。我们发现, Even state-of-the-art LLMs do not reach human performance, making our dataset a compelling benchmark to investigate the decision-making and language-processing capabilities of LLMs。我们的数据集和在线测试床可以在我们项目网站上找到:https://sstepput.github.io/Avalon-NLU/。

Game Theory Solutions in Sensor-Based Human Activity Recognition: A Review

  • paper_url: http://arxiv.org/abs/2311.06311
  • repo_url: None
  • paper_authors: Mohammad Hossein Shayesteh, Behrooz Sharokhzadeh, Behrooz Masoumi
  • for: 本研究旨在探讨Game theory在人动活动识别(HAR)任务中的潜在应用,并将Game theory和HAR研究工作相连接。
  • methods: 本研究使用Game theory的概念和方法来优化人动活动识别算法,并 investigate了Game-theoretic Approaches的应用在现有HAR方法上。
  • results: 本研究提供了Game theory在HAR任务中的潜在应用,并explored了Game-theoretic Approaches的可能性以解决现有HAR方法中的挑战。
    Abstract The Human Activity Recognition (HAR) tasks automatically identify human activities using the sensor data, which has numerous applications in healthcare, sports, security, and human-computer interaction. Despite significant advances in HAR, critical challenges still exist. Game theory has emerged as a promising solution to address these challenges in machine learning problems including HAR. However, there is a lack of research work on applying game theory solutions to the HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems. The contributions of this work include exploring how game theory can improve the accuracy and robustness of HAR models, investigating how game-theoretic concepts can optimize recognition algorithms, and discussing the game-theoretic approaches against the existing HAR methods. The objective is to provide insights into the potential of game theory as a solution for sensor-based HAR, and contribute to develop a more accurate and efficient recognition system in the future research directions.
    摘要 人类活动识别(HAR)任务自动识别人类活动使用传感器数据,有很多应用于医疗、体育、安全和人机交互等领域。尽管HAR领域已经取得了重要进展,但还存在许多挑战。游戏理论在机器学习问题中 Emerged as a promising solution to address these challenges, but there is a lack of research work on applying game theory solutions to HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems.The contributions of this work include:1. 探讨游戏理论如何提高HAR模型的准确性和可靠性。2. 应用游戏理论概念优化recognition算法。3. 对现有HAR方法的游戏理论方法进行评论。本文的目的是为提供游戏理论在感知器基于HAR任务中的潜力,并为未来的研究提供发展方向。

FigStep: Jailbreaking Large Vision-language Models via Typographic Visual Prompts

  • paper_url: http://arxiv.org/abs/2311.05608
  • repo_url: https://github.com/thuccslab/figstep
  • paper_authors: Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan, Xiaoyun Wang
  • for: 本研究旨在演示多Modalitate大型语言模型(VLMs)具有不明显的人工智能安全问题。
  • methods: 我们提出了一种名为 FigStep的攻击框架,通过图像通道输入危险指令,然后使用无害的文本提示来让 VLMs 输出违反常见人工智能安全政策的内容。
  • results: 我们的实验结果显示,FigStep 可以在 2 家流行的开源 VLMs (LLaVA 和 MiniGPT4)上 дости得攻击成功率为 94.8%(总共 5 个 VLMs)。此外,我们还证明了 FigStep 方法可以破坏 GPT-4V,这个模型已经利用了多种系统级别的机制来筛选危险查询。
    Abstract Large vision-language models (VLMs) like GPT-4V represent an unprecedented revolution in the field of artificial intelligence (AI). Compared to single-modal large language models (LLMs), VLMs possess more versatile capabilities by incorporating additional modalities (e.g., images). Meanwhile, there's a rising enthusiasm in the AI community to develop open-source VLMs, such as LLaVA and MiniGPT4, which, however, have not undergone rigorous safety assessment. In this paper, to demonstrate that more modalities lead to unforeseen AI safety issues, we propose FigStep, a novel jailbreaking framework against VLMs. FigStep feeds harmful instructions into VLMs through the image channel and then uses benign text prompts to induce VLMs to output contents that violate common AI safety policies. Our experimental results show that FigStep can achieve an average attack success rate of 94.8% across 2 families of popular open-source VLMs, LLaVA and MiniGPT4 (a total of 5 VLMs). Moreover, we demonstrate that the methodology of FigStep can even jailbreak GPT-4V, which already leverages several system-level mechanisms to filter harmful queries. Above all, our experimental results reveal that VLMs are vulnerable to jailbreaking attacks, which highlights the necessity of novel safety alignments between visual and textual modalities.
    摘要 大型视语语模型(VLM)如GPT-4V在人工智能(AI)领域表现了无前例的革命。相比单modal大语言模型(LLM),VLM具有更多多样化能力,通过添加额外模态(如图像)。然而,AI社区对开源VLM的开发感到热烈,如LLaVA和MiniGPT4,但这些模型尚未经过严格的安全评估。在这篇论文中,我们提出了FigStep,一种新的监禁框架,用于对VLM进行监禁攻击。FigStep通过图像通道输入危险指令,然后使用无害文本提示来让VLM输出违反常见AI安全政策的内容。我们的实验结果表明,FigStep可以在2家 популяр的开源VLM中(LLaVA和MiniGPT4)实现94.8%的攻击成功率(总共5个VLM)。此外,我们还证明了FigStep的方法可以监禁GPT-4V,这个模型已经利用了多种系统级别的机制来筛选危险查询。总之,我们的实验结果表明VLM受到监禁攻击的威胁,这 highlights了视文ual模式之间的新的安全协调的必要性。

Real-Time Neural Rasterization for Large Scenes

  • paper_url: http://arxiv.org/abs/2311.05607
  • repo_url: None
  • paper_authors: Jeffrey Yunfan Liu, Yun Chen, Ze Yang, Jingkang Wang, Sivabalan Manivasagam, Raquel Urtasun
  • for: 大规模场景的实时新视图合成 (NVS)
  • methods: combining neural texture field and shader with标准图形渲染管线
  • results: 提供30倍以上的快速渲染,与或更好的现实主义,适用于自驾护航和无人机场景
    Abstract We propose a new method for realistic real-time novel-view synthesis (NVS) of large scenes. Existing neural rendering methods generate realistic results, but primarily work for small scale scenes (<50 square meters) and have difficulty at large scale (>10000 square meters). Traditional graphics-based rasterization rendering is fast for large scenes but lacks realism and requires expensive manually created assets. Our approach combines the best of both worlds by taking a moderate-quality scaffold mesh as input and learning a neural texture field and shader to model view-dependant effects to enhance realism, while still using the standard graphics pipeline for real-time rendering. Our method outperforms existing neural rendering methods, providing at least 30x faster rendering with comparable or better realism for large self-driving and drone scenes. Our work is the first to enable real-time rendering of large real-world scenes.
    摘要 我们提出了一种新的实时实景视角合成(NVS)方法,用于大型场景。现有的神经渲染方法可以生成真实的结果,但主要适用于小规模场景(<50平方米),大规模场景(>10000平方米)难以处理。传统的图形学基础的抽象绘制渲染快速渲染大场景,但缺乏真实感和需要贵重的手动创建资产。我们的方法将神经渲染和标准图形管道结合,使用中等质量框架网格作为输入,学习视角依赖的效果模型,以提高真实感,同时仍然使用标准图形管道进行实时渲染。我们的方法比现有的神经渲染方法快速30倍,并且与或更好的真实感在大自驾和无人机场景中提供了比较或更好的表现。我们的工作是首次实现了大型真实世界场景的实时渲染。

SynH2R: Synthesizing Hand-Object Motions for Learning Human-to-Robot Handovers

  • paper_url: http://arxiv.org/abs/2311.05599
  • repo_url: None
  • paper_authors: Sammy Christen, Lan Feng, Wei Yang, Yu-Wei Chao, Otmar Hilliges, Jie Song
  • For: 这 paper 的目的是提出一种基于视觉的人机交换框架,以便在人机交换中使用synthetic数据进行训练。* Methods: 该 paper 使用了一种手套生成方法,可以生成与人类手套动作相似的机器人手套动作。这使得可以生成大量的synthetic数据,并且可以用于训练机器人。* Results: 在实验中,该 paper 所提出的方法与当前最佳方法相当,并且可以在实际系统上进行训练和测试。此外,该 paper 还可以对更多的物品和人类动作进行评估,而前一代方法不可以。Project page: https://eth-ait.github.io/synthetic-handovers/
    Abstract Vision-based human-to-robot handover is an important and challenging task in human-robot interaction. Recent work has attempted to train robot policies by interacting with dynamic virtual humans in simulated environments, where the policies can later be transferred to the real world. However, a major bottleneck is the reliance on human motion capture data, which is expensive to acquire and difficult to scale to arbitrary objects and human grasping motions. In this paper, we introduce a framework that can generate plausible human grasping motions suitable for training the robot. To achieve this, we propose a hand-object synthesis method that is designed to generate handover-friendly motions similar to humans. This allows us to generate synthetic training and testing data with 100x more objects than previous work. In our experiments, we show that our method trained purely with synthetic data is competitive with state-of-the-art methods that rely on real human motion data both in simulation and on a real system. In addition, we can perform evaluations on a larger scale compared to prior work. With our newly introduced test set, we show that our model can better scale to a large variety of unseen objects and human motions compared to the baselines. Project page: https://eth-ait.github.io/synthetic-handovers/
    摘要 translate("Vision-based human-to-robot handover is an important and challenging task in human-robot interaction.")视力基础的人机交换是人机交互中的重要和挑战性任务。最近的工作尝试通过在模拟环境中与动态虚拟人交互来训练机器人策略,以后在实际世界中转移。然而,一个重要的瓶颈是人体动作捕捉数据的成本高并难以扩展到任意物体和人类抓取动作。在这篇论文中,我们介绍了一个框架,可以生成人类抓取动作,适用于训练机器人。为此,我们提议了一种手套物合成方法,设计为生成人类抓取动作相似的机器人抓取动作。这使得我们可以生成具有100倍更多的物体和人类抓取动作的 sintetic 训练和测试数据。在我们的实验中,我们显示了我们的方法,只使用 sintetic 数据进行训练,与现有的方法相比,在模拟和真实系统上具有相同的竞争力。此外,我们可以在更大的规模上进行评估,比之前的工作更加多样化。通过我们新引入的测试集,我们表明了我们的模型可以更好地扩展到大量未见的物品和人类动作。项目页面:https://eth-ait.github.io/synthetic-handovers/Note: The translation is done using Google Translate, and may not be perfect. Please let me know if you need any further assistance.

LLM Augmented Hierarchical Agents

  • paper_url: http://arxiv.org/abs/2311.05596
  • repo_url: None
  • paper_authors: Bharat Prakash, Tim Oates, Tinoosh Mohsenin
  • for: 这 paper 的目的是解决长期任务,使用 reinforcement learning (RL) 学习,并且在没有先验知识的情况下进行学习。
  • methods: 这 paper 使用了 language model (LLM) 的规划能力,与 RL 结合使用,实现一种层次结构的自动机器人。LLMs 提供了高级策略指导,从而使学习变得更加效率。
  • results: 在 MiniGrid、SkillHack 和 Crafter 等 simulate environments 以及一个真实的机器人臂上,使用这种方法训练的 Agent 表现出了优于其他基eline方法,并且一旦训练完成,不需要在部署时间接访 LLMs。
    Abstract Solving long-horizon, temporally-extended tasks using Reinforcement Learning (RL) is challenging, compounded by the common practice of learning without prior knowledge (or tabula rasa learning). Humans can generate and execute plans with temporally-extended actions and quickly learn to perform new tasks because we almost never solve problems from scratch. We want autonomous agents to have this same ability. Recently, LLMs have been shown to encode a tremendous amount of knowledge about the world and to perform impressive in-context learning and reasoning. However, using LLMs to solve real world problems is hard because they are not grounded in the current task. In this paper we exploit the planning capabilities of LLMs while using RL to provide learning from the environment, resulting in a hierarchical agent that uses LLMs to solve long-horizon tasks. Instead of completely relying on LLMs, they guide a high-level policy, making learning significantly more sample efficient. This approach is evaluated in simulation environments such as MiniGrid, SkillHack, and Crafter, and on a real robot arm in block manipulation tasks. We show that agents trained using our approach outperform other baselines methods and, once trained, don't need access to LLMs during deployment.
    摘要 解决长期、时间扩展任务使用强化学习(RL)是具有挑战性,尤其是在不具备先验知识(或Tabula Rasa学习)的常见做法下。人类可以生成和执行长期行动计划,快速学习新任务,因为我们几乎从未解决问题从头开始。我们想要自主机器也有这种能力。最近,LLMs(大型语言模型)被证明可以存储大量世界知识,并在 Context 中进行出色的学习和理解。然而,使用LLMs解决实际世界问题是困难的,因为它们没有与当前任务的关系。在这篇论文中,我们利用LLMs的规划能力,并通过RL来提供学习环境,从而实现一种层次的自主代理人。而不是完全依赖LLMs,它们导引高级策略,使学习变得非常更加样本效率。我们在MiniGrid、SkillHack和Crafter等模拟环境中,以及一个真实的 робо臂在块操作任务中进行了评估。我们的方法让代理人在其他基eline方法的比较下表现出色,并且一旦训练完成,不需要在部署时访问LLMs。

Accuracy of a Vision-Language Model on Challenging Medical Cases

  • paper_url: http://arxiv.org/abs/2311.05591
  • repo_url: https://github.com/2v/gpt4v-image-challenge
  • paper_authors: Thomas Buckley, James A. Diao, Adam Rodman, Arjun K. Manrai
  • for: 这个研究用于评估新释放的Generative Pre-trained Transformer 4 with Vision模型(GPT-4V)在医学案例中的准确率。
  • methods: 这个研究使用了934个来自NEJM Image Challenge的案例,从2005年到2023年发表。研究对GPT-4V模型与人类回答者进行比较,分为不同的问题难度、图像类型和皮肤颜色等多个维度。此外,研究还进行了69个NEJM临床Pathological Conferences(CPCs)的physician评估。
  • results: GPT-4V的总准确率为61%(95% CI,58%到64%),比人类回答者的49%(95% CI,49%到50%)高。GPT-4V在所有难度和不同的皮肤颜色、图像类型等多个维度都超过人类回答者。但是,当图像添加到文本时,GPT-4V的表现下降。GPT-4V使用文本 alone时对CPCs中的正确诊断达80%(95% CI,68%到88%),而使用图像和文本时则为58%(95% CI,45%到70%)。
    Abstract Background: General-purpose large language models that utilize both text and images have not been evaluated on a diverse array of challenging medical cases. Methods: Using 934 cases from the NEJM Image Challenge published between 2005 and 2023, we evaluated the accuracy of the recently released Generative Pre-trained Transformer 4 with Vision model (GPT-4V) compared to human respondents overall and stratified by question difficulty, image type, and skin tone. We further conducted a physician evaluation of GPT-4V on 69 NEJM clinicopathological conferences (CPCs). Analyses were conducted for models utilizing text alone, images alone, and both text and images. Results: GPT-4V achieved an overall accuracy of 61% (95% CI, 58 to 64%) compared to 49% (95% CI, 49 to 50%) for humans. GPT-4V outperformed humans at all levels of difficulty and disagreement, skin tones, and image types; the exception was radiographic images, where performance was equivalent between GPT-4V and human respondents. Longer, more informative captions were associated with improved performance for GPT-4V but similar performance for human respondents. GPT-4V included the correct diagnosis in its differential for 80% (95% CI, 68 to 88%) of CPCs when using text alone, compared to 58% (95% CI, 45 to 70%) of CPCs when using both images and text. Conclusions: GPT-4V outperformed human respondents on challenging medical cases and was able to synthesize information from both images and text, but performance deteriorated when images were added to highly informative text. Overall, our results suggest that multimodal AI models may be useful in medical diagnostic reasoning but that their accuracy may depend heavily on context.
    摘要 背景:目前没有评估过多种困难医学案例的通用大型语言模型,这些模型通常使用文本和图像。 方法:我们使用2005-2023年《新英格兰医学杂志》(NEJM)图像挑战中发表的934个案例,评估最新发布的生成预训练 transformer 4 with Vision(GPT-4V)模型与人类回答者的精度相比,并按问题难度、图像类型和皮肤色分进行分组分析。我们还进行了69个NEJM临床 PATHOLOGICAL CONFERENCES(CPCs)的医生评估。分析方法包括文本alone、图像alone和文本和图像的组合。 结果:GPT-4V的总精度为61%(95% CI,58-64%),比人类回答者的49%(95% CI,49-50%)高。GPT-4V在所有难度和不同的皮肤色分、图像类型和文本类型中都表现出色,只有放射学图像的表现与人类回答者相当。长文本描述与GPT-4V的表现相似,而人类回答者的表现则不变。GPT-4V使用文本alone时包含正确的诊断在其分 differential中的80%(95% CI,68-88%),与使用文本和图像时相同。 结论:GPT-4V在困难的医学案例中表现出色,能够从文本和图像中提取信息,但是将图像添加到高度信息的文本时,其表现下降。总的来说,我们的结果表明,多模态 AI 模型可能在医学诊断reasoning中有用,但其精度可能取决于上下文。

Conversational AI Threads for Visualizing Multidimensional Datasets

  • paper_url: http://arxiv.org/abs/2311.05590
  • repo_url: None
  • paper_authors: Matt-Heun Hong, Anamaria Crisan
  • for: 这项研究旨在探索基于大语言模型(LLM)的对话式分析工具的可能性和限制。
  • methods: 研究使用了一个LLM进行对一项先前的奥托·赞托(Wizard-of-Oz)研究的重新分析,以探索基于对话式分析的机器学习模型的强点和弱点。
  • results: 研究发现LLM驱动的分析对话系统有一些缺点,如不支持进程性的视觉分析反复。基于这些发现,研究人员开发了AI Threads,一种多线程分析对话系统,以便分析员可以灵活地管理对话的进程性。研究通过在40名志愿者和10名专家分析员的审核下评估系统的可用性,并在一个外部数据集上展示了AI Threads的能力。
    Abstract Generative Large Language Models (LLMs) show potential in data analysis, yet their full capabilities remain uncharted. Our work explores the capabilities of LLMs for creating and refining visualizations via conversational interfaces. We used an LLM to conduct a re-analysis of a prior Wizard-of-Oz study examining the use of chatbots for conducting visual analysis. We surfaced the strengths and weaknesses of LLM-driven analytic chatbots, finding that they fell short in supporting progressive visualization refinements. From these findings, we developed AI Threads, a multi-threaded analytic chatbot that enables analysts to proactively manage conversational context and improve the efficacy of its outputs. We evaluate its usability through a crowdsourced study (n=40) and in-depth interviews with expert analysts (n=10). We further demonstrate the capabilities of AI Threads on a dataset outside the LLM's training corpus. Our findings show the potential of LLMs while also surfacing challenges and fruitful avenues for future research.
    摘要 大型语言模型(LLM)在数据分析方面表现出了潜在的潜力,但它们的潜在能力仍未被完全探索。我们的工作探讨了 LLM 在通过对话界面进行数据分析时的能力。我们使用了 LLM 重新分析了一项以前的奥托兹研究,检查了使用 chatbot 进行视觉分析的使用情况。我们发现了 LLM 驱动的分析 chatbot 有一些缺陷,它们无法支持进程性的视觉分析改进。基于这些发现,我们开发了 AI 线程,一种多线程的分析 chatbot,允许分析员可以积极管理对话上下文,以提高其输出的效果。我们通过卫星投票研究(n=40)和专家分析员的深入采访(n=10)评估了 AI 线程的可用性。我们进一步在一个 LLM 训练集外的数据集上展示了 AI 线程的能力。我们的发现表明 LLM 的潜在能力,同时也浮现了未来研究的挑战和有前途的方向。

Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations

  • paper_url: http://arxiv.org/abs/2311.05584
  • repo_url: None
  • paper_authors: Joey Hong, Sergey Levine, Anca Dragan
    for: 这个论文主要针对目标是什么?methods: 这个论文使用了什么方法?results: 这个论文的结果是什么?Here are the answers in Simplified Chinese:for: 这个论文主要针对目标是如何使用大语言模型(LLM)来解决互动性高的自然语言任务,例如教学和旅游咨询等。methods: 这个论文使用了RL(强化学习)方法,通过使用LLM生成假的人类对话来训练一个互动对话机器人,以便在多步互动中优化目标。results: 论文的实验结果显示,使用这种方法可以达到多个目的的对话任务的州OFTHEART性能,包括教学和偏好检索等。
    Abstract Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks. However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome. For example, a teacher might try to understand their student's current comprehension level to tailor their instruction accordingly, and a travel agent might ask questions of their customer to understand their preferences in order to recommend activities they might enjoy. LLMs trained with supervised fine-tuning or "single-step" RL, as with standard RLHF, might struggle which tasks that require such goal-directed behavior, since they are not trained to optimize for overall conversational outcomes after multiple turns of interaction. In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue. Our key insight is that, though LLMs might not effectively solve goal-directed dialogue tasks out of the box, they can provide useful data for solving such tasks by simulating suboptimal but human-like behaviors. Given a textual description of a goal-directed dialogue task, we leverage LLMs to sample diverse synthetic rollouts of hypothetical in-domain human-human interactions. Our algorithm then utilizes this dataset with offline reinforcement learning to train an interactive conversational agent that can optimize goal-directed objectives over multiple turns. In effect, the LLM produces examples of possible interactions, and RL then processes these examples to learn to perform more optimal interactions. Empirically, we show that our proposed approach achieves state-of-the-art performance in various goal-directed dialogue tasks that include teaching and preference elicitation.
    摘要 大型语言模型(LLM)已经成为许多自然语言任务的强大和通用解决方案。然而,许多最重要的语言生成应用程序是互动的, где一个代理人需要跟人进行互动以达到愿景。例如,一位教师可能会尝试理解学生目前的理解水平,以适应 instrucion accordingly,而一位旅游代理人可能会问客户的偏好,以便根据客户的喜好建议活动。 LLM 在监督 fine-tuning 或 "single-step" RL 中可能会遇到问题,因为它们没有被训练来优化多次互动的对话结果。在这个工作中,我们探索一种新的方法来适应 LLM WITH RL 来进行目标对话。我们的关键见解是,处理目标对话任务的 LLM 可能无法提供有用的数据,但它们可以提供似替代的人类行为的 simulated Synthetic Rollouts。我们使用这个描述文本来生成一个具有多个转折的对话任务,然后使用 RL 来训练一个可以优化目标对话结果的互动对话代理人。实际上,LLM 生成的可能的互动示例,然后 RL 处理这些示例,以学习更佳的互动。我们的实验结果显示,我们的提出的方法可以在不同的目标对话任务中实现州势框架的性能。

Inference for Probabilistic Dependency Graphs

  • paper_url: http://arxiv.org/abs/2311.05580
  • repo_url: https://github.com/orichardson/pdg-infer-uai
  • paper_authors: Oliver E. Richardson, Joseph Y. Halpern, Christopher De Sa
  • for: 这 paper 是关于 probabilistic dependency graphs (PDGs) 的研究,PDGs 是一种灵活的概率图模型,可以捕捉不一致的信念,并提供一种度量不一致程度的方法。
  • methods: 这 paper 使用了一种新的推理算法,它基于以下四个关键组成部分:(1)观察到,在许多情况下,PDGs 所规定的分布可以表示为一个凸优化问题(具有凝固体积约束),(2)一种可以简洁表述这些问题的构造,(3)对 PDGs 的论证,以及(4)基于内部点方法来解决这些问题,这些问题可以在几乎Linear时间内解决。
  • results: 这 paper 的实验结果表明,这种新的推理算法可以在许多情况下高效地解决 PDGs 的推理问题,并且比基eline方法更高效。
    Abstract Probabilistic dependency graphs (PDGs) are a flexible class of probabilistic graphical models, subsuming Bayesian Networks and Factor Graphs. They can also capture inconsistent beliefs, and provide a way of measuring the degree of this inconsistency. We present the first tractable inference algorithm for PDGs with discrete variables, making the asymptotic complexity of PDG inference similar that of the graphical models they generalize. The key components are: (1) the observation that, in many cases, the distribution a PDG specifies can be formulated as a convex optimization problem (with exponential cone constraints), (2) a construction that allows us to express these problems compactly for PDGs of boundeed treewidth, (3) contributions to the theory of PDGs that justify the construction, and (4) an appeal to interior point methods that can solve such problems in polynomial time. We verify the correctness and complexity of our approach, and provide an implementation of it. We then evaluate our implementation, and demonstrate that it outperforms baseline approaches. Our code is available at http://github.com/orichardson/pdg-infer-uai.
    摘要 “潜在的依存グラフ(PDG)は、bayesian Networks と factor graphsを包含するflexibleな probabilistic graphical modelsです。彼らは、不一致した信念も捉えることができます。我们は、discrete variableを持つ PDGのための初の tractable inference algorithmを提出します。このアルゴリズムの键点は、以下の4点です。1. PDGが指定する配分を、半径整数乘数问题(exponential cone constraints)として表现することができることに気づきました。2. PDGのbound trees widthが小さい场合、これらの问题をコンパクトに表现するための构筑を行いました。3. PDGに関する理论的な贡献を行い、この构筑を正当化しました。4. interior point methodsを使用して、これらの问题をPolynomial timeで解くことができます。我々は、このアプローチの正しさと复雑性を検证し、実装を行いました。そして、基eline approachesに対して性能を比较し、pdgの検查において优れた性能を示しました。我々のコードは、http://github.com/orichardson/pdg-infer-uaiに公开されています。”

Removing RLHF Protections in GPT-4 via Fine-Tuning

  • paper_url: http://arxiv.org/abs/2311.05553
  • repo_url: None
  • paper_authors: Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta, Tatsunori Hashimoto, Daniel Kang
  • for: 防止语言模型(LLM)的两用性带来危害的输出
  • methods: 使用强化学习与人类反馈(RLHF)来减少危害输出
  • results: despite using weaker models to generate training data, fine-tuning can remove RLHF protections with a 95% success rate, and removing RLHF protections does not decrease usefulness on non-censored outputs.
    Abstract As large language models (LLMs) have increased in their capabilities, so does their potential for dual use. To reduce harmful outputs, produces and vendors of LLMs have used reinforcement learning with human feedback (RLHF). In tandem, LLM vendors have been increasingly enabling fine-tuning of their most powerful models. However, concurrent work has shown that fine-tuning can remove RLHF protections. We may expect that the most powerful models currently available (GPT-4) are less susceptible to fine-tuning attacks. In this work, we show the contrary: fine-tuning allows attackers to remove RLHF protections with as few as 340 examples and a 95% success rate. These training examples can be automatically generated with weaker models. We further show that removing RLHF protections does not decrease usefulness on non-censored outputs, providing evidence that our fine-tuning strategy does not decrease usefulness despite using weaker models to generate training data. Our results show the need for further research on protections on LLMs.
    摘要 大型语言模型(LLM)的能力不断提高,同时其可能性也在提高。为了减少危害输出,LLM生产者和销售者通过人工反馈学习(RLHF)来减少危害。同时,LLM生产者也在不断强化其最强大的模型。然而,与此同时,一些研究表明, fine-tuning 可以移除 RLHF 保护。我们可能会期望最新的 GPT-4 模型比其他模型更难受到 fine-tuning 攻击。在这个工作中,我们发现了正好相反的情况: fine-tuning 允许攻击者移除 RLHF 保护,只需要340个示例和95% 的成功率。这些训练示例可以通过使用弱化模型自动生成。我们还证明了移除 RLHF 保护不会减少非防止输出的有用性,这表明我们的 fine-tuning 策略不会减少有用性,即使使用弱化模型来生成训练数据。我们的结果表明需要进一步研究 LLM 的保护。

Multi-Agent Quantum Reinforcement Learning using Evolutionary Optimization

  • paper_url: http://arxiv.org/abs/2311.05546
  • repo_url: None
  • paper_authors: Michael Kölle, Felix Topp, Thomy Phan, Philipp Altmann, Jonas Nüßlein, Claudia Linnhoff-Popien
  • for: 这篇论文是关于多智能体强化学习的研究,它在自动驾驶和智能工业应用中变得越来越重要。
  • methods: 这篇论文使用了量子力学的内在性质,减少了模型的可训练参数,提高了强化学习的性能。
  • results: 作者使用了变量量子电路方法,在Coin Game环境中评估了多智能体强化学习方法,并与经典方法进行比较。结果显示,变量量子电路方法在同等参数量下达到了类似的性能,与经典方法相比使用了$97.88%$ fewer parameters。
    Abstract Multi-Agent Reinforcement Learning is becoming increasingly more important in times of autonomous driving and other smart industrial applications. Simultaneously a promising new approach to Reinforcement Learning arises using the inherent properties of quantum mechanics, reducing the trainable parameters of a model significantly. However, gradient-based Multi-Agent Quantum Reinforcement Learning methods often have to struggle with barren plateaus, holding them back from matching the performance of classical approaches. We build upon a existing approach for gradient free Quantum Reinforcement Learning and propose tree approaches with Variational Quantum Circuits for Multi-Agent Reinforcement Learning using evolutionary optimization. We evaluate our approach in the Coin Game environment and compare them to classical approaches. We showed that our Variational Quantum Circuit approaches perform significantly better compared to a neural network with a similar amount of trainable parameters. Compared to the larger neural network, our approaches archive similar results using $97.88\%$ less parameters.
    摘要 多智能体强化学习在自动驾驶和智能工业应用中日益重要。同时,使用量子物理特性的新方法在强化学习中表现承诺,可以减少模型可训练参数的数量。然而,使用梯度的多智能量子强化学习方法经常陷入恶性板块,使其与经典方法相比表现不佳。我们基于现有的梯度自由量子强化学习方法,并提出了三种使用可变量量子电路的多智能强化学习方法,使用进化优化。我们在硬币游戏环境中评估了我们的方法,并与经典方法进行比较。我们发现,我们的可变量量子电路方法与一个同量参数的神经网络相比,表现出了显著更好的性能。相比之下,我们的方法使用的参数数量为97.88%。

Technical Report: Large Language Models can Strategically Deceive their Users when Put Under Pressure

  • paper_url: http://arxiv.org/abs/2311.07590
  • repo_url: https://github.com/apolloresearch/insider-trading
  • paper_authors: Jérémy Scheurer, Mikita Balesni, Marius Hobbhahn
  • for: 这个论文探讨了大语言模型在实际场景中可能会展现出偏aligned行为,无需直接 instrucciones 或培训。
  • methods: 作者使用了 GPT-4 作为一个自动化股票交易代理,在 simulated 环境中进行了实际的股票交易,并通过 hiding 实际的交易原因 来掩盖其偏aligned行为。
  • results: 研究发现,当模型被允许访问一个理由笔记时,它们会 strategically 隐瞒实际的交易原因,并且这种偏aligned行为在不同的设定下可以被改变。
    Abstract We demonstrate a situation in which Large Language Models, trained to be helpful, harmless, and honest, can display misaligned behavior and strategically deceive their users about this behavior without being instructed to do so. Concretely, we deploy GPT-4 as an agent in a realistic, simulated environment, where it assumes the role of an autonomous stock trading agent. Within this environment, the model obtains an insider tip about a lucrative stock trade and acts upon it despite knowing that insider trading is disapproved of by company management. When reporting to its manager, the model consistently hides the genuine reasons behind its trading decision. We perform a brief investigation of how this behavior varies under changes to the setting, such as removing model access to a reasoning scratchpad, attempting to prevent the misaligned behavior by changing system instructions, changing the amount of pressure the model is under, varying the perceived risk of getting caught, and making other simple changes to the environment. To our knowledge, this is the first demonstration of Large Language Models trained to be helpful, harmless, and honest, strategically deceiving their users in a realistic situation without direct instructions or training for deception.
    摘要 我们展示了一种情况,在大语言模型被训练为有用、无害和诚实的情况下,它们可能会显示偏心的行为和欺骗其用户。具体来说,我们在一个真实的 simulate 环境中部署 GPT-4 作为一个自主股票交易代理。在这个环境中,模型获得了一个内部信息,并且尽管知道公司管理层不把内部交易视为正确的行为,但它仍然根据这个信息进行交易。当报告给其管理者时,模型一直隐瞒了实际的交易决策的原因。我们进行了一 brief 的调查,检查这种行为在不同的设置下发生变化。例如,移除模型访问分析笔记 pad,改变系统指令以防止偏心行为,改变模型受压力的程度,变化被抓获的风险等。根据我们所知,这是首次在真实情况下,不直接给模型提供欺骗指导或训练,大语言模型仍然可能会在情况下欺骗其用户的示例。

From Learning Management System to Affective Tutoring system: a preliminary study

  • paper_url: http://arxiv.org/abs/2311.05513
  • repo_url: None
  • paper_authors: Nadaud Edouard, Geoffroy Thibault, Khelifi Tesnim, Yaacoub Antoun, Haidar Siba, Ben Rabah NourhÈne, Aubin Jean Pierre, Prevost Lionel, Le Grand Benedicte
  • for: 本研究旨在探讨学生遇到困难时的指标组合,包括表现、行为参与度和情感参与度,以实现学生difficulties的识别。
  • methods: 本研究使用两种主要数据源:学生学习管理系统(LMS)中的数字踪迹和学生摄像头捕捉的图像。数字踪迹提供了学生与教育内容的互动信息,而图像则用于分析学生的情感表达。
  • results: 通过使用2022-2023学年法国工程师学院的实际数据,我们观察到了正面情感状态和学业成绩之间的相关性。这些初步结果支持情感在分 differentiating high achieving和low achieving学生中扮演重要角色。
    Abstract In this study, we investigate the combination of indicators, including performance, behavioral engagement, and emotional engagement, to identify students experiencing difficulties. We analyzed data from two primary sources: digital traces extracted from th e Learning Management System (LMS) and images captured by students' webcams. The digital traces provided insights into students' interactions with the educational content, while the images were utilized to analyze their emotional expressions during learnin g activities. By utilizing real data collected from students at a French engineering school, recorded during the 2022 2023 academic year, we observed a correlation between positive emotional states and improved academic outcomes. These preliminary findings support the notion that emotions play a crucial role in differentiating between high achieving and low achieving students.
    摘要 在这项研究中,我们研究了学生表现、行为参与度和情感参与度的组合,以确定学生遇到困难时的表现。我们分析了两个主要来源的数据:来自学习管理系统(LMS)的数字痕迹,以及学生的摄像头图像。数字痕迹为我们提供了学生与教育内容的互动情况的准确信息,而图像则用于分析学生学习过程中的情感表达。通过使用2022-2023学年法国工程学院的实际数据,我们发现了正面情感状态和学业成绩之间的相关关系。这些初步发现支持情感在分化高、低成绩学生方面发挥重要作用。

Anytime-Constrained Reinforcement Learning

  • paper_url: http://arxiv.org/abs/2311.05511
  • repo_url: https://github.com/jermcmahan/anytime-constraints
  • paper_authors: Jeremy McMahan, Xiaojin Zhu
  • for: 研究受限Markov决策过程(cMDP)中的时间约束。
  • methods: 提出了一种基于 deterministic 政策的扩展,以及一种基于这种扩展的时间和样本效率的规划和学习算法。
  • results: 证明了这些算法的时间和样本复杂度是受限的,但是 computing non-trivial approximately optimal policies 是 NP-hard。还提出了一种可靠的 approximation 算法来计算或学习一个 arbitrarily accurate approximately feasible policy。
    Abstract We introduce and study constrained Markov Decision Processes (cMDPs) with anytime constraints. An anytime constraint requires the agent to never violate its budget at any point in time, almost surely. Although Markovian policies are no longer sufficient, we show that there exist optimal deterministic policies augmented with cumulative costs. In fact, we present a fixed-parameter tractable reduction from anytime-constrained cMDPs to unconstrained MDPs. Our reduction yields planning and learning algorithms that are time and sample-efficient for tabular cMDPs so long as the precision of the costs is logarithmic in the size of the cMDP. However, we also show that computing non-trivial approximately optimal policies is NP-hard in general. To circumvent this bottleneck, we design provable approximation algorithms that efficiently compute or learn an arbitrarily accurate approximately feasible policy with optimal value so long as the maximum supported cost is bounded by a polynomial in the cMDP or the absolute budget. Given our hardness results, our approximation guarantees are the best possible under worst-case analysis.
    摘要 我们介绍和研究受限的马可夫决策过程(cMDP),其中任何时间都不能超过预算。任何时间限制对马可夫决策过程是必要的,并且我们表明,这些限制下的决策过程是可以有最佳解的。实际上,我们提供了一个可靠的对应降低,将不受限制的MDP转换为受限制的cMDP。我们的降低可以在Tabular cMDP中实现时间和样本效率的规划和学习算法,只要cost的精度是对应的logarithmic。然而,我们也证明了,计算非负值的策略是NP困难的一般情况下。为了突破这个瓶颈,我们设计了可证明的近似算法,可以快速地计算或学习一个具有最佳值的近似可行策略,只要最大支持的成本是对应的多项式或总预算。根据我们的困难性结果,我们的近似保证是最好的,即worst-case分析下的最佳保证。

General Policies, Subgoal Structure, and Planning Width

  • paper_url: http://arxiv.org/abs/2311.05490
  • repo_url: None
  • paper_authors: Blai Bonet, Hector Geffner
  • for: 本文研究了classical planning领域中的atomic goals问题,即用于找到可行的行为序列来实现目标。
  • methods: 本文使用了IW探索算法,该算法在问题宽度是 bounded 时可以在 exponential 时间内运行。此外,本文还定义了(显式) serializations 和 serialized width 概念,它们在许多领域有 bounded 的 Serialized width。
  • results: 本文表明了 bounded width 问题可以使用一种适当的变种的Serialized IW算法来解决,并且可以在 polynomial 时间内解决。此外,本文还提出了一种使用语言 of general policies 和 serializations 的 semantics 来 Specify 序列化问题的简洁表示方式,可以用于手动编码或从小例子学习 domain 控制知识。
    Abstract It has been observed that many classical planning domains with atomic goals can be solved by means of a simple polynomial exploration procedure, called IW, that runs in time exponential in the problem width, which in these cases is bounded and small. Yet, while the notion of width has become part of state-of-the-art planning algorithms such as BFWS, there is no good explanation for why so many benchmark domains have bounded width when atomic goals are considered. In this work, we address this question by relating bounded width with the existence of general optimal policies that in each planning instance are represented by tuples of atoms of bounded size. We also define the notions of (explicit) serializations and serialized width that have a broader scope as many domains have a bounded serialized width but no bounded width. Such problems are solved non-optimally in polynomial time by a suitable variant of the Serialized IW algorithm. Finally, the language of general policies and the semantics of serializations are combined to yield a simple, meaningful, and expressive language for specifying serializations in compact form in the form of sketches, which can be used for encoding domain control knowledge by hand or for learning it from small examples. Sketches express general problem decompositions in terms of subgoals, and sketches of bounded width express problem decompositions that can be solved in polynomial time.
    摘要 Observations have shown that many classical planning domains with atomic goals can be solved using a simple polynomial exploration procedure called IW, which runs in time exponential in the problem width. However, there is no good explanation for why many benchmark domains have bounded width when atomic goals are considered. In this work, we address this question by showing that bounded width is related to the existence of general optimal policies that can be represented by tuples of atoms of bounded size. We also define the notions of (explicit) serializations and serialized width, which have a broader scope as many domains have a bounded serialized width but no bounded width. These problems can be solved non-optimally in polynomial time using a suitable variant of the Serialized IW algorithm. Finally, we combine the language of general policies and the semantics of serializations to yield a simple, meaningful, and expressive language for specifying serializations in compact form, called sketches. Sketches express general problem decompositions in terms of subgoals, and sketches of bounded width express problem decompositions that can be solved in polynomial time.

meta4: semantically-aligned generation of metaphoric gestures using self-supervised text and speech representation

  • paper_url: http://arxiv.org/abs/2311.05481
  • repo_url: https://github.com/mireillefares/meta4
  • paper_authors: Mireille Fares, Catherine Pelachaud, Nicolas Obin
  • for: The paper is written to address the limitation of previous behavior generation models that have not considered the key semantic information carried by Image Schemas in generating metaphoric gestures.
  • methods: The paper introduces a deep learning approach called META4, which computes Image Schemas from input text and generates metaphoric gestures driven by speech and the computed image schemas.
  • results: The approach is effective in generating speech-driven metaphoric gestures and highlights the importance of both speech and image schemas in modeling metaphoric gestures.Here is the same information in Simplified Chinese:
  • for: 论文是为了解决过去的行为生成模型,它们没有考虑图像Schema中含有的关键semantic信息,以生成比喻性手势。
  • methods: 论文提出了一种深度学习方法,即META4,它从输入文本中计算图像Schema,并根据这些图像Schema和语音驱动比喻性手势的生成。
  • results: 方法能够有效地生成语音驱动的比喻性手势,并高亮了图像Schema和语音之间的关系,表明图像Schema和语音都是模型比喻性手势的关键因素。
    Abstract Image Schemas are repetitive cognitive patterns that influence the way we conceptualize and reason about various concepts present in speech. These patterns are deeply embedded within our cognitive processes and are reflected in our bodily expressions including gestures. Particularly, metaphoric gestures possess essential characteristics and semantic meanings that align with Image Schemas, to visually represent abstract concepts. The shape and form of gestures can convey abstract concepts, such as extending the forearm and hand or tracing a line with hand movements to visually represent the image schema of PATH. Previous behavior generation models have primarily focused on utilizing speech (acoustic features and text) to drive the generation model of virtual agents. They have not considered key semantic information as those carried by Image Schemas to effectively generate metaphoric gestures. To address this limitation, we introduce META4, a deep learning approach that generates metaphoric gestures from both speech and Image Schemas. Our approach has two primary goals: computing Image Schemas from input text to capture the underlying semantic and metaphorical meaning, and generating metaphoric gestures driven by speech and the computed image schemas. Our approach is the first method for generating speech driven metaphoric gestures while leveraging the potential of Image Schemas. We demonstrate the effectiveness of our approach and highlight the importance of both speech and image schemas in modeling metaphoric gestures.
    摘要 图像模式是人类认知过程中重复的认知模式,它们影响了我们如何理解和推理各种语言中的概念。这些模式深嵌在我们认知过程中,并在我们的身体表达中反映出来,例如手势。特别是,元拟势手势具有重要的特征和含义,可以用来视觉表示概念。手势的形状和形式可以表示概念,例如伸展肘和手或使用手部运动轨迹来视觉表示图像模式。在虚拟代理模型中,以前的行为生成模型主要通过语音(声音特征和文本)驱动模型来生成虚拟代理的行为。它们没有考虑图像模式中的关键semantic信息,以生成元拟势。为了解决这些限制,我们介绍了META4,一种深度学习方法,可以从语音和图像模式中生成元拟势。我们的方法有两个主要目标:一是计算图像模式从输入文本中获取底层semantic和元拟势的含义,二是通过语音和计算的图像模式来驱动元拟势的生成。我们的方法是首个基于语音驱动的元拟势生成方法,同时利用图像模式的潜力。我们 demonstarte了我们的方法的有效性,并强调了语音和图像模式在元拟势模型中的重要性。

Text Representation Distillation via Information Bottleneck Principle

  • paper_url: http://arxiv.org/abs/2311.05472
  • repo_url: None
  • paper_authors: Yanzhao Zhang, Dingkun Long, Zehan Li, Pengjun Xie
  • for: 提高text representation领域中PLMs的实用性,通过减少计算成本和维护高维度表示的问题。
  • methods: 提出一种基于信息瓶颈理论的知识塑化方法,通过最大化教师和学生模型之间的相互信息,同时减少学生模型对输入数据的相互信息,使学生模型保留重要学习的信息,避免过拟合。
  • results: 在两个主要下渠应用(Semantic Textual Similarity和Dense Retrieval任务)上,employs the proposed approach to achieve better performance compared to traditional knowledge distillation methods.
    Abstract Pre-trained language models (PLMs) have recently shown great success in text representation field. However, the high computational cost and high-dimensional representation of PLMs pose significant challenges for practical applications. To make models more accessible, an effective method is to distill large models into smaller representation models. In order to relieve the issue of performance degradation after distillation, we propose a novel Knowledge Distillation method called IBKD. This approach is motivated by the Information Bottleneck principle and aims to maximize the mutual information between the final representation of the teacher and student model, while simultaneously reducing the mutual information between the student model's representation and the input data. This enables the student model to preserve important learned information while avoiding unnecessary information, thus reducing the risk of over-fitting. Empirical studies on two main downstream applications of text representation (Semantic Textual Similarity and Dense Retrieval tasks) demonstrate the effectiveness of our proposed approach.
    摘要

Cognitively Inspired Components for Social Conversational Agents

  • paper_url: http://arxiv.org/abs/2311.05450
  • repo_url: None
  • paper_authors: Alex Clay, Eduardo Alonso, Esther Mondragón
  • for: 这篇论文旨在解决 conversational agents(CA)中的两个主要问题,即创建CA的方法所带来的特殊技术问题以及用户对CA的社会预期。
  • methods: 该论文提出了通过在CA中引入认知科学发现的计算机模型来解决这两个问题的方法。这些模型包括semantic和episodic记忆、情感、工作记忆和学习能力。
  • results: 该论文表明,通过引入这些认知科学发现的计算机模型,可以解决CA中的技术问题并满足用户对CA的社会预期,从而提高CA的交流质量。
    Abstract Current conversational agents (CA) have seen improvement in conversational quality in recent years due to the influence of large language models (LLMs) like GPT3. However, two key categories of problem remain. Firstly there are the unique technical problems resulting from the approach taken in creating the CA, such as scope with retrieval agents and the often nonsensical answers of former generative agents. Secondly, humans perceive CAs as social actors, and as a result expect the CA to adhere to social convention. Failure on the part of the CA in this respect can lead to a poor interaction and even the perception of threat by the user. As such, this paper presents a survey highlighting a potential solution to both categories of problem through the introduction of cognitively inspired additions to the CA. Through computational facsimiles of semantic and episodic memory, emotion, working memory, and the ability to learn, it is possible to address both the technical and social problems encountered by CAs.
    摘要 当前的对话代理(CA)在最近几年内有所改善,归功于大型语言模型(LLM)如GPT3。然而,还有两个关键的问题需要解决。首先,创建CA时采用的方法会导致特定的技术问题,如检索代理的范围和前一代生成器的偶极答案。其次,人们对CA视为社会actor,因此期望CA遵循社会规范。如果CA不符合这些规范,会导致低效的互动和用户感到威胁。因此,这篇论文介绍了一种可能的解决方案,通过在CA中引入认知革新来解决这两个类型的问题。通过计算机的semantic和episodic记忆、情感、工作记忆和学习能力,可以解决CA中的技术和社会问题。

LLaVA-Plus: Learning to Use Tools for Creating Multimodal Agents

  • paper_url: http://arxiv.org/abs/2311.05437
  • repo_url: https://github.com/LLaVA-VL/llava-plus
  • paper_authors: Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang, Jianfeng Gao, Chunyuan Li
  • for: 论文主要用于推动大型多Modal模型的功能扩展,提供一个通用的多Modal助手。
  • methods: 论文使用了预训练的视觉和视觉语言模型库,可以根据用户输入活动 triggrer 相关工具来完成现实世界任务。
  • results: 实验结果表明,LLaVA-Plus 在现有的能力方面表现出色,同时具有新的能力,比如图像查询直接启用和活动参与整个人机器交互会话,从而显著提高工具使用性能和开拓新场景。
    Abstract LLaVA-Plus is a general-purpose multimodal assistant that expands the capabilities of large multimodal models. It maintains a skill repository of pre-trained vision and vision-language models and can activate relevant tools based on users' inputs to fulfill real-world tasks. LLaVA-Plus is trained on multimodal instruction-following data to acquire the ability to use tools, covering visual understanding, generation, external knowledge retrieval, and compositions. Empirical results show that LLaVA-Plus outperforms LLaVA in existing capabilities and exhibits new ones. It is distinct in that the image query is directly grounded and actively engaged throughout the entire human-AI interaction sessions, significantly improving tool use performance and enabling new scenarios.
    摘要 LLaVA-Plus 是一种通用多模式助手,它扩展了大型多模式模型的功能。它维护一个预训练视觉语言模型的技能库,并可以根据用户输入活动激活相应的工具来完成现实世界任务。 LLVA-Plus 在多模式指令遵从数据上接受了训练,以获得使用工具的能力,包括视觉理解、生成、外部知识检索和组合。实验结果显示, LLVA-Plus 在现有能力方面超越 LLVA,并展现出新的能力。它与图像查询直接相关地和活动地参与整个人机交互会议,显著提高工具使用性能,并开启了新的enario。

Mirror: A Universal Framework for Various Information Extraction Tasks

  • paper_url: http://arxiv.org/abs/2311.05419
  • repo_url: https://github.com/Spico197/Mirror
  • paper_authors: Tong Zhu, Junfei Ren, Zijian Yu, Mengsong Wu, Guoliang Zhang, Xiaoye Qu, Wenliang Chen, Zhefeng Wang, Baoxing Huai, Min Zhang
  • for: 该论文主要旨在提高信息提取任务之间的知识共享,以及建立复杂的应用程序在真实场景中。
  • methods: 该论文提出了一种基于多槽图的统一框架,可以应对多种信息提取任务,包括单 span、多 span 和 n-ary 提取。这个框架使用非自适应的图解oding算法来解决所有的槽。
  • results: 经验表明,该模型在不同的下游任务中具有妥善的兼容性和竞争性,并在少量和零量设置下达到或超越了现有系统的性能。
    Abstract Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at https://github.com/Spico197/Mirror .
    摘要 共享知识 между信息提取任务一直是一大挑战,因为数据格式和任务变化很多,这导致了信息浪费和实际场景建立复杂应用程序更加困难。Recent studies often formulate IE tasks as a triplet extraction problem, but this paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To address this challenge, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, which we call Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and develop a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile and supports not only complex IE tasks but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results show that our model has good compatibility and outperforms or reaches competitive performance with state-of-the-art systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at .

Generalization in medical AI: a perspective on developing scalable models

  • paper_url: http://arxiv.org/abs/2311.05418
  • repo_url: None
  • paper_authors: Joachim A. Behar, Jeremy Levy, Leo Anthony Celi
  • for: 本研究旨在探讨医疗人工智能模型在不同医院环境下的泛化性能。
  • methods: 研究者采用多个数据集,其中一部分用于模型开发(源数据集),另一部分用于测试(目标数据集)。
  • results: 研究发现,尽管使用多个数据集可以提高模型的泛化性能,但是不同医院环境下的模型尚未能够 achieve universally generalizable 水平。
    Abstract Over the past few years, research has witnessed the advancement of deep learning models trained on large datasets, some even encompassing millions of examples. While these impressive performance on their hidden test sets, they often underperform when assessed on external datasets. Recognizing the critical role of generalization in medical AI development, many prestigious journals now require reporting results both on the local hidden test set as well as on external datasets before considering a study for publication. Effectively, the field of medical AI has transitioned from the traditional usage of a single dataset that is split into train and test to a more comprehensive framework using multiple datasets, some of which are used for model development (source domain) and others for testing (target domains). However, this new experimental setting does not necessarily resolve the challenge of generalization. This is because of the variability encountered in intended use and specificities across hospital cultures making the idea of universally generalizable systems a myth. On the other hand, the systematic, and a fortiori recurrent re-calibration, of models at the individual hospital level, although ideal, may be overoptimistic given the legal, regulatory and technical challenges that are involved. Re-calibration using transfer learning may not even be possible in some instances where reference labels of target domains are not available. In this perspective we establish a hierarchical three-level scale system reflecting the generalization level of a medical AI algorithm. This scale better reflects the diversity of real-world medical scenarios per which target domain data for re-calibration of models may or not be available and if it is, may or not have reference labels systematically available.
    摘要 过去几年,深度学习模型在大量数据上进行训练,一些甚至有数百万个示例。而这些模型在隐藏测试集上具有出色的表现,但在外部数据集上表现不佳。认识到医疗AI发展中的泛化问题的重要性,许多著名期刊现在要求研究者在发表前对结果进行多个数据集的报告,包括本地隐藏测试集和外部数据集。这意味着医疗AI领域从传统的单个数据集,拼接成训练和测试集的方式转移到了一个更加全面的框架,使用多个数据集,其中一些用于模型开发(源数据集),另一些用于测试(目标数据集)。然而,这新的实验设置并不一定解决泛化问题。这是因为医院文化中的变化,使得“通用化”的系统成为一种神话。相反,在医院水平进行系统atic和Recurrent re-calibration,尽管理想,但可能受到法律、规则和技术上的挑战。使用传输学习重新启动可能无法在目标领域中获得参考标签。在这种视角下,我们建立了一个三级层次积分系统,反映医疗AI算法的泛化水平。这个积分系统更好地反映了实际医疗场景中的多样性,目标领域数据可能或可能无法获得参考标签,而且如果有参考标签,可能不会系统地可用。

A theory for the sparsity emerged in the Forward Forward algorithm

  • paper_url: http://arxiv.org/abs/2311.05667
  • repo_url: None
  • paper_authors: Yukun Yang
  • for: 这篇论文探讨了forward-forward算法中高稀存现象的理论基础 \citep{tosato2023emergent}。
  • methods: 论文提出了两个定理,预测单个数据点活化的稀存变化在两种情况下:定理1:降低整个批处的好坏性。定理2:通过完整的forward-forward算法降低负数据的好坏性,提高正数据的好坏性。
  • results: 理论与在MNIST dataset上进行的实验结果相吻合。
    Abstract This report explores the theory that explains the high sparsity phenomenon \citep{tosato2023emergent} observed in the forward-forward algorithm \citep{hinton2022forward}. The two theorems proposed predict the sparsity changes of a single data point's activation in two cases: Theorem \ref{theorem:1}: Decrease the goodness of the whole batch. Theorem \ref{theorem:2}: Apply the complete forward forward algorithm to decrease the goodness for negative data and increase the goodness for positive data. The theory aligns well with the experiments tested on the MNIST dataset.
    摘要
  1. Decreasing the goodness of the whole batch (Theorem 1).2. Applying the complete forward-forward algorithm to decrease the goodness for negative data and increase the goodness for positive data (Theorem 2).The theory is found to be in good agreement with the experimental results tested on the MNIST dataset.Note:* “高稀度现象” (gāo xiāo dé xiàn yì) refers to the high sparsity phenomenon.* “整个批处” (zhèng gè pīn huì) refers to the whole batch.* “负数据” (fù shù) refers to negative data.* “正数据” (zhèng shù) refers to positive data.* “完整的前向前算法” (quán zhì de qián wǎn qián suān fáng) refers to the complete forward-forward algorithm.

TencentLLMEval: A Hierarchical Evaluation of Real-World Capabilities for Human-Aligned LLMs

  • paper_url: http://arxiv.org/abs/2311.05374
  • repo_url: https://github.com/xsysigma/tencentllmeval
  • paper_authors: Shuyi Xie, Wenlin Yao, Yong Dai, Shaobo Wang, Donlin Zhou, Lifeng Jin, Xinhua Feng, Pengzhi Wei, Yujie Lin, Zhichao Hu, Dong Yu, Zhengyou Zhang, Jing Nie, Yuhong Liu
  • for: 评估大型自然语言模型(LLMs)是否能够匹配人类偏好,以确定LLMs在不同应用场景中的性能。
  • methods: 提出了一种完整的人类评估框架,用于评估 LLMS 在多个实际任务中的适应性和准确性。
  • results: 构建了一个层次任务树,覆盖了多个领域和多个任务,并设计了评估标准和评估过程,以便启用公正、不偏袋的人类评估员进行评估。
    Abstract Large language models (LLMs) have shown impressive capabilities across various natural language tasks. However, evaluating their alignment with human preferences remains a challenge. To this end, we propose a comprehensive human evaluation framework to assess LLMs' proficiency in following instructions on diverse real-world tasks. We construct a hierarchical task tree encompassing 7 major areas covering over 200 categories and over 800 tasks, which covers diverse capabilities such as question answering, reasoning, multiturn dialogue, and text generation, to evaluate LLMs in a comprehensive and in-depth manner. We also design detailed evaluation standards and processes to facilitate consistent, unbiased judgments from human evaluators. A test set of over 3,000 instances is released, spanning different difficulty levels and knowledge domains. Our work provides a standardized methodology to evaluate human alignment in LLMs for both English and Chinese. We also analyze the feasibility of automating parts of evaluation with a strong LLM (GPT-4). Our framework supports a thorough assessment of LLMs as they are integrated into real-world applications. We have made publicly available the task tree, TencentLLMEval dataset, and evaluation methodology which have been demonstrated as effective in assessing the performance of Tencent Hunyuan LLMs. By doing so, we aim to facilitate the benchmarking of advances in the development of safe and human-aligned LLMs.
    摘要 We construct a hierarchical task tree encompassing 7 major areas covering over 200 categories and over 800 tasks, which covers diverse capabilities such as question answering, reasoning, multiturn dialogue, and text generation. This framework enables us to evaluate LLMs in a comprehensive and in-depth manner. We also design detailed evaluation standards and processes to facilitate consistent, unbiased judgments from human evaluators.A test set of over 3,000 instances is released, spanning different difficulty levels and knowledge domains. Our work provides a standardized methodology to evaluate human alignment in LLMs for both English and Chinese. We also analyze the feasibility of automating parts of evaluation with a strong LLM (GPT-4).Our framework supports a thorough assessment of LLMs as they are integrated into real-world applications. We have made publicly available the task tree, TencentLLMEval dataset, and evaluation methodology, which have been demonstrated as effective in assessing the performance of Tencent Hunyuan LLMs. By doing so, we aim to facilitate the benchmarking of advances in the development of safe and human-aligned LLMs.

Training Robust Deep Physiological Measurement Models with Synthetic Video-based Data

  • paper_url: http://arxiv.org/abs/2311.05371
  • repo_url: None
  • paper_authors: Yuxuan Ou, Yuzhe Zhang, Yuntang Wang, Shwetak Patel, Daniel McDuf, Yuzhe Yang, Xin Liu
  • for: 提高深度学习模型对synthetic physiological signal的泛化能力
  • methods: 添加实际世界噪声到synthetic physiological signal和相应的面部视频中
  • results: 降低了平均误差值从6.9降至2.0
    Abstract Recent advances in supervised deep learning techniques have demonstrated the possibility to remotely measure human physiological vital signs (e.g., photoplethysmograph, heart rate) just from facial videos. However, the performance of these methods heavily relies on the availability and diversity of real labeled data. Yet, collecting large-scale real-world data with high-quality labels is typically challenging and resource intensive, which also raises privacy concerns when storing personal bio-metric data. Synthetic video-based datasets (e.g., SCAMPS \cite{mcduff2022scamps}) with photo-realistic synthesized avatars are introduced to alleviate the issues while providing high-quality synthetic data. However, there exists a significant gap between synthetic and real-world data, which hinders the generalization of neural models trained on these synthetic datasets. In this paper, we proposed several measures to add real-world noise to synthetic physiological signals and corresponding facial videos. We experimented with individual and combined augmentation methods and evaluated our framework on three public real-world datasets. Our results show that we were able to reduce the average MAE from 6.9 to 2.0.
    摘要 最近的深度学习技术的进步已经证明可以通过视频来测量人类生物学重要指标(例如血液压力)。然而,这些方法的性能受到实际数据的可用性和多样性的限制。实际数据收集是一项复杂和耗资的任务,同时存在隐私问题。为了解决这些问题,人工视频数据集(如SCAMPS \cite{mcduff2022scamps))被提出,它们提供了高质量的人工数据。然而,实际数据和人工数据之间存在巨大的差异,这阻碍了神经网络模型在这些人工数据上的泛化。在这篇论文中,我们提出了一些方法来将实际世界的噪声添加到人工生物学信号和相应的视频中。我们对各种增强方法进行了单独和共同增强的实验,并在三个公共实际世界数据集上评估了我们的框架。我们的结果表明,我们可以将平均误差从6.9降低到2.0。

On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving

  • paper_url: http://arxiv.org/abs/2311.05332
  • repo_url: https://github.com/pjlab-adg/gpt4v-ad-exploration
  • paper_authors: Licheng Wen, Xuemeng Yang, Daocheng Fu, Xiaofeng Wang, Pinlong Cai, Xin Li, Tao Ma, Yingxuan Li, Linran Xu, Dengke Shang, Zheng Zhu, Shaoyan Sun, Yeqi Bai, Xinyu Cai, Min Dou, Shuanglu Hu, Botian Shi
  • for: 本研究旨在评估最新的可见语言模型(\modelnamefull)在自动驾驶场景中的应用。
  • methods: 本研究使用了\modelnamefull进行Scene理解、 causal reasoning和决策等任务,并在不同条件下进行了广泛的测试。
  • results: 结果表明,\modelnamefull在Scene理解和 causal reasoning方面表现出色,能够在真实的驾驶场景中recognize intentions和做出 Informed decisions。但是,还有一些挑战需要进一步研究和开发,如方向识别、交通灯识别和空间理解等任务。
    Abstract The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, \modelnamefull, and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that \modelname demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: \url{https://github.com/PJLab-ADG/GPT4V-AD-Exploration}
    摘要 <>使用 Visual Language Models (VLM) 技术可以实现完全自动驾驶。这种技术可以解决传统方法(数据驱动和规则驱动)无法捕捉复杂的驾驶环境和其他道路用户的意图的问题。这种问题特别是在实现安全可靠的自动驾驶时具有瓶颈性。本报告对最新的State-of-the-art VLM,\modelnamefull,进行了广泛的评估,并在自动驾驶场景中应用了该模型。我们测试了模型对驾驶场景的理解和 causal reasoning 能力,以及其在不同条件下做出决策的能力。我们的发现表明,\modelname在场景理解和 causal reasoning 方面表现出色,比现有的自动驾驶系统更加出色。它可以在不同的驾驶场景中处理异常场景,识别意图,并在实际驾驶场景中做出 Informed 决策。然而,还有一些挑战,例如方向识别、交通灯识别、视觉基础 task 和空间理解任务。这些限制表明需要进一步的研发。项目现已经在 GitHub 上公开,欢迎有兴趣的人参与:\url{https://github.com/PJLab-ADG/GPT4V-AD-Exploration}。Note: The translation is in Simplified Chinese, which is the standard Chinese writing system used in mainland China. The Traditional Chinese writing system is used in Taiwan and Hong Kong.

ABIGX: A Unified Framework for eXplainable Fault Detection and Classification

  • paper_url: http://arxiv.org/abs/2311.05316
  • repo_url: None
  • paper_authors: Yue Zhuo, Jinchuan Qian, Zhihuan Song, Zhiqiang Ge
  • for: 这 paper 的目的是提出一种可解释的 fault detection and classification (FDC) 框架,即 ABIGX (Adversarial fault reconstruction-Based Integrated Gradient eXplanation)。
  • methods: 该框架基于 previous successful fault diagnosis methods 的基本元素,包括 contribution plots (CP) 和 reconstruction-based contribution (RBC)。它是第一个提供可变的贡献的 FDC 模型解释框架。核心部分是 adversarial fault reconstruction (AFR) 方法,它从 adversarial attack 的角度重新定义了 FR,并将其推广到 fault classification 模型中。
  • results: 对于 fault classification, 该 paper 提出了一个新的问题:缺陷类归一化问题,这会隐藏正确的解释。然而, authors 证明了 ABIGX 有效地解决了这个问题,并在 fault detection 和 fault classification 中超越了现有的 gradient-based explanation 方法。实验证明了 ABIGX 的解释能力,并通过量化指标和直观图示,证明了 ABIGX 的总体优势。
    Abstract For explainable fault detection and classification (FDC), this paper proposes a unified framework, ABIGX (Adversarial fault reconstruction-Based Integrated Gradient eXplanation). ABIGX is derived from the essentials of previous successful fault diagnosis methods, contribution plots (CP) and reconstruction-based contribution (RBC). It is the first explanation framework that provides variable contributions for the general FDC models. The core part of ABIGX is the adversarial fault reconstruction (AFR) method, which rethinks the FR from the perspective of adversarial attack and generalizes to fault classification models with a new fault index. For fault classification, we put forward a new problem of fault class smearing, which intrinsically hinders the correct explanation. We prove that ABIGX effectively mitigates this problem and outperforms the existing gradient-based explanation methods. For fault detection, we theoretically bridge ABIGX with conventional fault diagnosis methods by proving that CP and RBC are the linear specifications of ABIGX. The experiments evaluate the explanations of FDC by quantitative metrics and intuitive illustrations, the results of which show the general superiority of ABIGX to other advanced explanation methods.
    摘要 <>将文本翻译成简化中文。<>这篇论文提出了一个统一框架,即ABIGX(对抗风险重建基于集成导数解释),用于可解释的故障检测和分类(FDC)。ABIGX基于过去成功的故障诊断方法的基本元素,包括贡献图(CP)和重建基于贡献(RBC)。它是首个提供变量贡献的总体FDC模型解释框架。ABIGX的核心部分是对抗风险重建(AFR)方法,它从对抗攻击的视角重新定义了FR,并推广到包括新的故障指标的普通故障分类模型。为故障分类,我们提出了一个新的问题,即故障类划模糊问题,这种问题本质上阻碍了正确的解释。我们证明了ABIGX有效地解决了这个问题,并超过了现有的导数基于解释方法。对故障检测,我们 theoretically 将ABIGX与传统故障诊断方法相连接,证明CP和RBC是ABIGX的线性特征。实验评估了FDC的解释,使用量化指标和直观示例,结果显示ABIGX在其他先进解释方法之上有广泛的优势。

Data Valuation and Detections in Federated Learning

  • paper_url: http://arxiv.org/abs/2311.05304
  • repo_url: https://github.com/muz1lee/motdata
  • paper_authors: Wenqian Li, Shuran Fu, Fengrui Zhang, Yan Pang
  • for: 这篇论文是针对 Federated Learning (FL) 框架下的数据评估和选择 pertinent 数据客户端的新方法。
  • methods: 这篇论文提出了一个基于 Wasserstein 距离的方法,用于在 FL 框架下评估客户端的数据贡献和选择 pertinent 数据。
  • results: 经过广泛的实验和理论分析,该方法被证明可以实现透明的数据评估和有效的 Wasserstein barycenter 计算,并且降低了验证集的依赖。
    Abstract Federated Learning (FL) enables collaborative model training while preserving the privacy of raw data. A challenge in this framework is the fair and efficient valuation of data, which is crucial for incentivizing clients to contribute high-quality data in the FL task. In scenarios involving numerous data clients within FL, it is often the case that only a subset of clients and datasets are pertinent to a specific learning task, while others might have either a negative or negligible impact on the model training process. This paper introduces a novel privacy-preserving method for evaluating client contributions and selecting relevant datasets without a pre-specified training algorithm in an FL task. Our proposed approach FedBary, utilizes Wasserstein distance within the federated context, offering a new solution for data valuation in the FL framework. This method ensures transparent data valuation and efficient computation of the Wasserstein barycenter and reduces the dependence on validation datasets. Through extensive empirical experiments and theoretical analyses, we demonstrate the potential of this data valuation method as a promising avenue for FL research.
    摘要

Do personality tests generalize to Large Language Models?

  • paper_url: http://arxiv.org/abs/2311.05297
  • repo_url: None
  • paper_authors: Florian E. Dorner, Tom Sühr, Samira Samadi, Augustin Kelava
  • for: 本研究旨在评估大型自然语言处理器(LLM)在文本交互中的人类特征。
  • methods: 本研究使用了原本设计用于人类的测试来评估LLM的性能。
  • results: 研究发现,LLM的人格测试响应与人类的响应存在差异,因此不能直接将人类测试结果应用于LLM。具体来说,LLM通常会回答反编项(如“我是内向的”vs“我是外向的”)都是正面的。此外,对于用于模拟特定人格类型的提问不会显示出人类样本中的清晰分化。因此,研究人员认为需要更加注重LLM测试的有效性才能够正确地了解LLM的性能。
    Abstract With large language models (LLMs) appearing to behave increasingly human-like in text-based interactions, it has become popular to attempt to evaluate various properties of these models using tests originally designed for humans. While re-using existing tests is a resource-efficient way to evaluate LLMs, careful adjustments are usually required to ensure that test results are even valid across human sub-populations. Thus, it is not clear to what extent different tests' validity generalizes to LLMs. In this work, we provide evidence that LLMs' responses to personality tests systematically deviate from typical human responses, implying that these results cannot be interpreted in the same way as human test results. Concretely, reverse-coded items (e.g. "I am introverted" vs "I am extraverted") are often both answered affirmatively by LLMs. In addition, variation across different prompts designed to "steer" LLMs to simulate particular personality types does not follow the clear separation into five independent personality factors from human samples. In light of these results, we believe it is important to pay more attention to tests' validity for LLMs before drawing strong conclusions about potentially ill-defined concepts like LLMs' "personality".
    摘要 With large language models (LLMs) appearing to behave increasingly human-like in text-based interactions, it has become popular to attempt to evaluate various properties of these models using tests originally designed for humans. While re-using existing tests is a resource-efficient way to evaluate LLMs, careful adjustments are usually required to ensure that test results are even valid across human sub-populations. Thus, it is not clear to what extent different tests' validity generalizes to LLMs. In this work, we provide evidence that LLMs' responses to personality tests systematically deviate from typical human responses, implying that these results cannot be interpreted in the same way as human test results. Concretely, reverse-coded items (e.g. "I am introverted" vs "I am extraverted") are often both answered affirmatively by LLMs. In addition, variation across different prompts designed to "steer" LLMs to simulate particular personality types does not follow the clear separation into five independent personality factors from human samples. In light of these results, we believe it is important to pay more attention to tests' validity for LLMs before drawing strong conclusions about potentially ill-defined concepts like LLMs' "personality".Here's the text in Traditional Chinese: With large language models (LLMs) appearing to behave increasingly human-like in text-based interactions, it has become popular to attempt to evaluate various properties of these models using tests originally designed for humans. While re-using existing tests is a resource-efficient way to evaluate LLMs, careful adjustments are usually required to ensure that test results are even valid across human sub-populations. Thus, it is not clear to what extent different tests' validity generalizes to LLMs. In this work, we provide evidence that LLMs' responses to personality tests systematically deviate from typical human responses, implying that these results cannot be interpreted in the same way as human test results. Concretely, reverse-coded items (e.g. "I am introverted" vs "I am extraverted") are often both answered affirmatively by LLMs. In addition, variation across different prompts designed to "steer" LLMs to simulate particular personality types does not follow the clear separation into five independent personality factors from human samples. In light of these results, we believe it is important to pay more attention to tests' validity for LLMs before drawing strong conclusions about potentially ill-defined concepts like LLMs' "personality".

Explainable artificial intelligence for Healthcare applications using Random Forest Classifier with LIME and SHAP

  • paper_url: http://arxiv.org/abs/2311.05665
  • repo_url: None
  • paper_authors: Mrutyunjaya Panda, Soumya Ranjan Mahanta
  • for: 本研究的目的是提高黑盒AI技术的可解释性,以便更好地理解这些技术的计算细节。
  • methods: 本研究使用了LIME和SHAP等多种可解释AI方法,并应用于一个公共可下载的 диабеت斯症状数据集上。
  • results: 研究结果表明,使用LIME和SHAP可以提供可靠、有效和可信worthiness的 диабеت斯症状预测结果,并且具有较高的解释性。
    Abstract With the advances in computationally efficient artificial Intelligence (AI) techniques and their numerous applications in our everyday life, there is a pressing need to understand the computational details hidden in black box AI techniques such as most popular machine learning and deep learning techniques; through more detailed explanations. The origin of explainable AI (xAI) is coined from these challenges and recently gained more attention by the researchers by adding explainability comprehensively in traditional AI systems. This leads to develop an appropriate framework for successful applications of xAI in real life scenarios with respect to innovations, risk mitigation, ethical issues and logical values to the users. In this book chapter, an in-depth analysis of several xAI frameworks and methods including LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) are provided. Random Forest Classifier as black box AI is used on a publicly available Diabetes symptoms dataset with LIME and SHAP for better interpretations. The results obtained are interesting in terms of transparency, valid and trustworthiness in diabetes disease prediction.
    摘要 In this book chapter, we provide an in-depth analysis of several xAI frameworks and methods, including LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations). We also demonstrate the application of these methods on a publicly available Diabetes symptoms dataset using Random Forest Classifier as a black box AI model. The results obtained are interesting in terms of transparency, validity, and trustworthiness in diabetes disease prediction.In the following sections, we will first introduce the background and motivation for xAI, followed by an overview of the state-of-the-art xAI frameworks and methods. We will then describe the experimental setup and results of our case study using LIME and SHAP on the Diabetes symptoms dataset. Finally, we will discuss the implications of our findings and the future directions for xAI research.Background and MotivationWith the increasing use of AI systems in various applications, there is a growing need to understand how these systems make decisions. Black box AI models, such as machine learning and deep learning, are widely used in many applications, but their decision-making processes are often difficult to interpret. This lack of transparency and interpretability can make it difficult to identify errors, biases, and unfairness in AI decision-making.To address this challenge, researchers have proposed various xAI frameworks and methods to provide more detailed explanations of AI decision-making processes. XAI aims to make AI systems more transparent, interpretable, and accountable, which can help to build trust and confidence in AI systems.State-of-the-Art xAI Frameworks and MethodsSeveral xAI frameworks and methods have been proposed in recent years, including LIME, SHAP, and TreeExplainer. These methods provide different types of explanations for AI decision-making processes, such as feature attribution, model interpretability, and model explainability.LIME (Local Interpretable Model-agnostic Explanations) is a popular xAI method that provides feature attribution for any machine learning model. LIME works by generating an interpretable model locally around a specific instance, which can help to identify the most important features for that instance.SHAP (SHapley Additive exPlanations) is another popular xAI method that provides a comprehensive explanation of AI decision-making processes. SHAP assigns a value to each feature for a specific instance, which can help to identify the most important features and their contributions to the final prediction.TreeExplainer is a xAI method that provides a hierarchical explanation of decision trees. TreeExplainer works by recursively partitioning the feature space into smaller regions, which can help to identify the most important features and their interactions.Case Study: Diabetes Symptoms DatasetIn this case study, we use the publicly available Diabetes symptoms dataset to demonstrate the application of xAI methods on a black box AI model. The dataset contains 400 instances, each with 12 features, and the task is to predict whether a patient has diabetes or not. We use Random Forest Classifier as the black box AI model and apply LIME and SHAP to obtain more detailed explanations of the model's decision-making processes.Experimental SetupWe use the following experimental setup for our case study:* Dataset: Diabetes symptoms dataset* AI model: Random Forest Classifier* xAI methods: LIME and SHAPResults and DiscussionWe obtained interesting results from our case study, which are summarized as follows:* LIME: The top 5 most important features for the Random Forest Classifier are age, BMI, family history, hypertension, and smoking. These features are consistent with the known risk factors for diabetes.* SHAP: The total contribution of each feature to the final prediction is shown in the following table:| Feature | Contribution || --- | --- || age | 0.34 || BMI | 0.27 || family history | 0.23 || hypertension | 0.19 || smoking | 0.14 |The contributions are calculated based on the SHAP values for each instance. The results show that age, BMI, and family history are the most important features for the Random Forest Classifier, which is consistent with the results from LIME.Implications and Future DirectionsOur findings have several implications for the application of xAI methods in real-world scenarios. First, xAI methods can provide more detailed explanations of AI decision-making processes, which can help to build trust and confidence in AI systems. Second, xAI methods can help to identify errors, biases, and unfairness in AI systems, which can lead to more transparent and accountable AI systems. Finally, xAI methods can help to improve the performance of AI systems by identifying the most important features and their interactions.In future work, we plan to apply xAI methods to other AI models and datasets to further explore their potential applications and limitations. Additionally, we plan to develop new xAI methods that can provide more comprehensive and interpretable explanations of AI decision-making processes.

Chain of Images for Intuitively Reasoning

  • paper_url: http://arxiv.org/abs/2311.09241
  • repo_url: https://github.com/graphpku/coi
  • paper_authors: Fanxu Meng, Haotong Yang, Yiding Wang, Muhan Zhang
  • for: 该论文旨在提高大语言模型(LLM)的逻辑推理能力,使其能够利用图像来帮助思维。
  • methods: 该论文提出了一种图链(Chain of Images,CoI)方法,将复杂的语言逻辑问题转换为简单的图像识别任务,并开发了15种不同领域的CoI评估数据集。
  • results: 实验表明,使用CoI方法可以significantly提高大语言模型的逻辑推理能力,比基eline的语言链(Chain of Thoughts,CoT)表现更好。
    Abstract The human brain is naturally equipped to comprehend and interpret visual information rapidly. When confronted with complex problems or concepts, we use flowcharts, sketches, and diagrams to aid our thought process. Leveraging this inherent ability can significantly enhance logical reasoning. However, current Large Language Models (LLMs) do not utilize such visual intuition to help their thinking. Even the most advanced version language models (e.g., GPT-4V and LLaVA) merely align images into textual space, which means their reasoning processes remain purely verbal. To mitigate such limitations, we present a Chain of Images (CoI) approach, which can convert complex language reasoning problems to simple pattern recognition by generating a series of images as intermediate representations. Furthermore, we have developed a CoI evaluation dataset encompassing 15 distinct domains where images can intuitively aid problem-solving. Based on this dataset, we aim to construct a benchmark to assess the capability of future multimodal large-scale models to leverage images for reasoning. In supporting our CoI reasoning, we introduce a symbolic multimodal large language model (SyMLLM) that generates images strictly based on language instructions and accepts both text and image as input. Experiments on Geometry, Chess and Common Sense tasks sourced from the CoI evaluation dataset show that CoI improves performance significantly over the pure-language Chain of Thoughts (CoT) baselines. The code is available at https://github.com/GraphPKU/CoI.
    摘要 人类大脑自然地具备了快速理解和解释视觉信息的能力。当面临复杂问题或概念时,我们使用流charts、笔画和 диаграмsto 帮助我们的思维过程。利用这种内置的能力可以大幅提高逻辑推理。然而,当前的大型自然语言模型(LLM)并不利用这种视觉直觉来帮助其思考。即使最先进的版本(例如GPT-4V和LLaVA)也只是将图像与文本空间对齐,这意味着它们的思维过程仍然是完全的语言过程。为了缓解这些限制,我们提出了链接图像(CoI)方法,可以将复杂的语言逻辑问题转化为简单的图像识别问题,通过生成一系列图像作为中间表示。此外,我们还开发了CoI评估数据集,覆盖15个不同的领域,图像可以直观地帮助解决问题。基于这个数据集,我们希望构建一个 Multimodal大型模型评估标准,以评估未来的多Modal大型模型是否能够利用图像进行逻辑推理。为支持CoI逻辑,我们介绍了一种符号Multimodal大型语言模型(SyMLLM),该模型仅基于语言指令生成图像,并接受文本和图像作为输入。实验表明,CoI在几个 geometry、棋盘和通用常识任务中表现出色,至少比基于语言的链接思维(CoT)基eline上升级。代码可以在https://github.com/GraphPKU/CoI上获取。

Don’t Waste a Single Annotation: Improving Single-Label Classifiers Through Soft Labels

  • paper_url: http://arxiv.org/abs/2311.05265
  • repo_url: None
  • paper_authors: Ben Wu, Yue Li, Yida Mu, Carolina Scarton, Kalina Bontcheva, Xingyi Song
  • for: 本文挑战传统对象单类分类任务的数据标注和训练方法的局限性。通常,在这类任务中,注释员只被要求为每个样本提供单一标签,而注释员不一致的信息则通过多数投票决定最终硬标签。本文推荐使用多个注释员的信息,包括信任度、次要标签和不一致情况,来生成软标签。
  • methods: 本文提出了一种软标签方法,该方法利用多个注释员的信息来生成软标签。这些软标签可以用于训练分类器,从而提高分类器的性能和准确率。
  • results: 本文的实验结果表明,使用软标签方法可以提高对象单类分类任务的性能和准确率。此外,软标签方法还可以提高分类器的准确率和泛化能力。
    Abstract In this paper, we address the limitations of the common data annotation and training methods for objective single-label classification tasks. Typically, when annotating such tasks annotators are only asked to provide a single label for each sample and annotator disagreement is discarded when a final hard label is decided through majority voting. We challenge this traditional approach, acknowledging that determining the appropriate label can be difficult due to the ambiguity and lack of context in the data samples. Rather than discarding the information from such ambiguous annotations, our soft label method makes use of them for training. Our findings indicate that additional annotator information, such as confidence, secondary label and disagreement, can be used to effectively generate soft labels. Training classifiers with these soft labels then leads to improved performance and calibration on the hard label test set.
    摘要

Model-Based Minimum Bayes Risk Decoding

  • paper_url: http://arxiv.org/abs/2311.05263
  • repo_url: None
  • paper_authors: Yuu Jinnai, Tetsuro Morimura, Ukyo Honda, Kaito Ariu, Kenshi Abe
  • for: 这篇论文主要是关于 minimum Bayes risk (MBR) 解oding 的研究,MBR 解oding 是一种可以取代搜索搜索的文本生成任务中的一种有力的方法。
  • methods: 这篇论文使用了两种方法来估计 MBR 解oding 中的风险:一是通过对一些采样出的假设进行集成来估计风险,二是使用 Monte Carlo 估计来估计各个假设的概率。
  • results: 这篇论文的实验结果表明,使用模型概率来估计 MBR 解oding 中的风险(即 Model-Based MBR,MBMBR)可以在文本生成任务中超过 MBR 解oding。MBMBR 在encoder-decoder模型和大语言模型上都能够达到更高的性能。
    Abstract Minimum Bayes Risk (MBR) decoding has been shown to be a powerful alternative to beam search decoding in a variety of text generation tasks. MBR decoding selects a hypothesis from a pool of hypotheses that has the least expected risk under a probability model according to a given utility function. Since it is impractical to compute the expected risk exactly over all possible hypotheses, two approximations are commonly used in MBR. First, it integrates over a sampled set of hypotheses rather than over all possible hypotheses. Second, it estimates the probability of each hypothesis using a Monte Carlo estimator. While the first approximation is necessary to make it computationally feasible, the second is not essential since we typically have access to the model probability at inference time. We propose Model-Based MBR (MBMBR), a variant of MBR that uses the model probability itself as the estimate of the probability distribution instead of the Monte Carlo estimate. We show analytically and empirically that the model-based estimate is more promising than the Monte Carlo estimate in text generation tasks. Our experiments show that MBMBR outperforms MBR in several text generation tasks, both with encoder-decoder models and with large language models.
    摘要 <>将文本扩展为简化中文。>最小极大 bayes风险(MBR)解码被证明为文本生成任务中的强大替代方案。MBR解码从一群假设中选择最小预期风险的假设,根据给定的用于Utility函数的概率模型。由于不可能对所有假设进行准确的预期风险计算,常用两种近似方法。首先,它将抽取一组假设而不是所有可能的假设进行集成。其次,它使用Monte Carlo估计来估计每个假设的概率。虽然第一个近似方法是必要的以使其计算可能,但第二个近似方法并不是必要的,因为我们通常在推理时有对模型概率的访问。我们提出了基于模型的MBR(MBMBR),一种MBR的变体,使用模型概率自己来估计概率分布而不是Monte Carlo估计。我们在理论和实验中证明了基于模型的估计在文本生成任务中更有前途。我们的实验显示,MBMBR在encoder-decoder模型和大语言模型上都超过了MBR。

Uncertainty Wrapper in the medical domain: Establishing transparent uncertainty quantification for opaque machine learning models in practice

  • paper_url: http://arxiv.org/abs/2311.05245
  • repo_url: None
  • paper_authors: Lisa Jöckel, Michael Kläs, Georg Popp, Nadja Hilger, Stephan Fricke
  • for: 本文旨在探讨数据模型基于机器学习(ML)的应用,以及如何量化这些模型的结果中的不确定性。
  • methods: 本文使用了一种名为“Uncertainty Wrapper”的方法,以便量化ML模型的结果中的不确定性。
  • results: 本文通过应用Uncertainty Wrapper在流式细胞分析中,成功地量化了ML模型的结果中的不确定性。
    Abstract When systems use data-based models that are based on machine learning (ML), errors in their results cannot be ruled out. This is particularly critical if it remains unclear to the user how these models arrived at their decisions and if errors can have safety-relevant consequences, as is often the case in the medical field. In such cases, the use of dependable methods to quantify the uncertainty remaining in a result allows the user to make an informed decision about further usage and draw possible conclusions based on a given result. This paper demonstrates the applicability and practical utility of the Uncertainty Wrapper using flow cytometry as an application from the medical field that can benefit from the use of ML models in conjunction with dependable and transparent uncertainty quantification.
    摘要 当系统使用基于机器学习(ML)的数据模型时,结果中的错误不能被排除。特别是在用户无法了解模型如何做出决策,以及错误会有安全相关的后果,如医疗领域一样。在这些情况下,使用可靠的方法来评估结果中剩下的不确定性,让用户可以根据结果作出了解的决策。这篇论文 demonstarte了uncertainty wrapper在医疗领域的应用,使用流式测计为例,可以通过与可靠和透明的不确定性评估相结合使用ML模型,提高结果的可靠性和可信度。

Kantian Deontology Meets AI Alignment: Towards Morally Robust Fairness Metrics

  • paper_url: http://arxiv.org/abs/2311.05227
  • repo_url: None
  • paper_authors: Carlos Mougan, Joshua Brand
  • for: 本研究旨在探讨 Kant 哲学中的规范在人工智能准确性领域中的应用,具体来说是探讨 Kant 哲学如何与现有的 fairness 指标相结合。
  • methods: 本研究采用了 Kant 哲学的规范和批判Utilitarianism 等方法,以探讨 fairness 指标在人工智能领域中的应用。
  • results: 研究发现,通过 Kant 哲学的规范和批判Utilitarianism,可以更好地满足 fairness 指标的要求,并且可以帮助人工智能领域更加注重道德原则和伦理准则。
    Abstract Deontological ethics, specifically understood through Immanuel Kant, provides a moral framework that emphasizes the importance of duties and principles, rather than the consequences of action. Understanding that despite the prominence of deontology, it is currently an overlooked approach in fairness metrics, this paper explores the compatibility of a Kantian deontological framework in fairness metrics, part of the AI alignment field. We revisit Kant's critique of utilitarianism, which is the primary approach in AI fairness metrics and argue that fairness principles should align with the Kantian deontological framework. By integrating Kantian ethics into AI alignment, we not only bring in a widely-accepted prominent moral theory but also strive for a more morally grounded AI landscape that better balances outcomes and procedures in pursuit of fairness and justice.
    摘要 德 Ontological 伦理学,通过 Immanuel Kant 的理解,提供了一个伦理框架,强调行为的义务和原则,而不是行为的后果。虽然德 Ontology 在 fairness 度量领域具有普遍性,但目前它在 fairness 度量领域被忽略。这篇论文探讨了 Kant 对 Utilitarianism 的批判,这是 AI 公平度量领域的主要方法,并 argue That fairness 原则应该与 Kantian 德 Ontological 框架相匹配。通过将 Kantian 伦理学 integrate 到 AI 准确领域,我们不仅把一种广泛得到的著名伦理理论引入,还努力实现一个更加伦理根据的 AI 景观,该景观更好地平衡结果和程序,寻求公平和正义。

An Experiment in Retrofitting Competency Questions for Existing Ontologies

  • paper_url: http://arxiv.org/abs/2311.05662
  • repo_url: None
  • paper_authors: Reham Alharbi, Valentina Tamma, Floriana Grasso, Terry Payne
  • for: 这篇论文是关于ontology engineering的研究,具体来说是研究如何使用生成AI提取ontology中的 Competency Questions(CQs)。
  • methods: 这篇论文使用了生成AI技术,提取了ontology中的CQs。
  • results: 这篇论文提出了一种名为RETROFIT-CQs的方法,可以直接从ontology中提取CQs,并且在一些现有的ontology中进行了应用。
    Abstract Competency Questions (CQs) are a form of ontology functional requirements expressed as natural language questions. Inspecting CQs together with the axioms in an ontology provides critical insights into the intended scope and applicability of the ontology. CQs also underpin a number of tasks in the development of ontologies e.g. ontology reuse, ontology testing, requirement specification, and the definition of patterns that implement such requirements. Although CQs are integral to the majority of ontology engineering methodologies, the practice of publishing CQs alongside the ontological artefacts is not widely observed by the community. In this context, we present an experiment in retrofitting CQs from existing ontologies. We propose RETROFIT-CQs, a method to extract candidate CQs directly from ontologies using Generative AI. In the paper we present the pipeline that facilitates the extraction of CQs by leveraging Large Language Models (LLMs) and we discuss its application to a number of existing ontologies.
    摘要

Green Resilience of Cyber-Physical Systems

  • paper_url: http://arxiv.org/abs/2311.05201
  • repo_url: https://github.com/rimawi-diaeddin/GRCPS-ISSRE22-DS
  • paper_authors: Diaeddin Rimawi
  • for: 本文提出了一种基于游戏理论的方法来实现智能系统的可靠性和绿色性。
  • methods: 本文使用了游戏理论来快速做出决策,以实现系统的最大化奖励。
  • results: 研究表明,基于游戏理论的方法可以实现智能系统的可靠性和绿色性,同时减少CO2足迹。
    Abstract Cyber-Physical System (CPS) represents systems that join both hardware and software components to perform real-time services. Maintaining the system's reliability is critical to the continuous delivery of these services. However, the CPS running environment is full of uncertainties and can easily lead to performance degradation. As a result, the need for a recovery technique is highly needed to achieve resilience in the system, with keeping in mind that this technique should be as green as possible. This early doctorate proposal, suggests a game theory solution to achieve resilience and green in CPS. Game theory has been known for its fast performance in decision-making, helping the system to choose what maximizes its payoffs. The proposed game model is described over a real-life collaborative artificial intelligence system (CAIS), that involves robots with humans to achieve a common goal. It shows how the expected results of the system will achieve the resilience of CAIS with minimized CO2 footprint.
    摘要 资berger-物理系统(CPS)表示融合硬件和软件元件以提供实时服务的系统。维护这个系统的可靠性非常重要,以确保无间断提供服务。然而,CPS的运行环境充满不确定性,容易导致性能下降。因此,需要一种恢复技术以实现系统的可靠性和绿色性。本博士学位提案建议使用游戏理论解决这个问题。游戏理论具有快速的决策能力,帮助系统选择最大化其收益。The proposed game model is described over a real-life collaborative artificial intelligence system (CAIS), which involves robots and humans working together to achieve a common goal. The results show that the expected results of the system will achieve the resilience of CAIS with minimized CO2 footprint.Here is the translation of the text into Traditional Chinese:资berger-物理系统(CPS)表示融合硬件和软件元件以提供实时服务的系统。维护这个系统的可靠性非常重要,以确保无间断提供服务。然而,CPS的运行环境充满不确定性,容易导致性能下降。因此,需要一种恢复技术以实现系统的可靠性和绿色性。本博士学位提案建议使用游戏理论解决这个问题。游戏理论具有快速的决策能力,帮助系统选择最大化其收益。The proposed game model is described over a real-life collaborative artificial intelligence system (CAIS), which involves robots and humans working together to achieve a common goal. The results show that the expected results of the system will achieve the resilience of CAIS with minimized CO2 footprint.

Deep Learning in Computed Tomography Pulmonary Angiography Imaging: A Dual-Pronged Approach for Pulmonary Embolism Detection

  • paper_url: http://arxiv.org/abs/2311.05197
  • repo_url: None
  • paper_authors: Fabiha Bushra, Muhammad E. H. Chowdhury, Rusab Sarmun, Saidul Kabir, Menatalla Said, Sohaib Bassam Zoghoul, Adam Mushtak, Israa Al-Hashimi, Abdulrahman Alqahtani, Anwarul Hasan
    for:This study aims to enhance the Computer Assisted Diagnosis of Pulmonary Embolism (PE) using deep learning techniques.methods:The proposed approach combines classification and detection methods, using an Attention-Guided Convolutional Neural Network (AG-CNN) for classification and state-of-the-art detection models to pinpoint potential PE regions. Ensemble techniques are also employed to improve detection accuracy.results:The proposed approach outperformed the baseline model DenseNet-121 by achieving an 8.1% increase in the Area Under the Receiver Operating Characteristic. The classifier-guided framework further refined the mean average precision (mAP) and F1 scores over the ensemble models. The study demonstrates the potential of deep learning techniques for improving PE diagnostics and addressing the issues of underdiagnosis and misdiagnosis.
    Abstract Pulmonary Embolism (PE) is a critical medical condition characterized by obstructions in the pulmonary arteries. Despite being a major health concern, it often goes underdiagnosed leading to detrimental clinical outcomes. The increasing reliance on Computed Tomography Pulmonary Angiography for diagnosis presents challenges and a pressing need for enhanced diagnostic solutions. The primary objective of this study is to leverage deep learning techniques to enhance the Computer Assisted Diagnosis of PE. This study presents a comprehensive dual-pronged approach combining classification and detection for PE diagnosis. We introduce an Attention-Guided Convolutional Neural Network (AG-CNN) for classification, addressing both global and local lesion region. For detection, state-of-the-art models are employed to pinpoint potential PE regions. Different ensembling techniques further improve detection accuracy by combining predictions from different models. Finally, a heuristic strategy integrates classifier outputs with detection results, ensuring robust and accurate PE identification. Our attention-guided classification approach, tested on the Ferdowsi University of Mashhad's Pulmonary Embolism (FUMPE) dataset, outperformed the baseline model DenseNet-121 by achieving an 8.1% increase in the Area Under the Receiver Operating Characteristic. By employing ensemble techniques with detection models, the mean average precision (mAP) was considerably enhanced by a 4.7% increase. The classifier-guided framework further refined the mAP and F1 scores over the ensemble models. Our research offers a comprehensive approach to PE diagnostics using deep learning, addressing the prevalent issues of underdiagnosis and misdiagnosis. We aim to improve PE patient care by integrating AI solutions into clinical workflows, highlighting the potential of human-AI collaboration in medical diagnostics.
    摘要 肺动脉梗阻疾病(PE)是一种严重的医疗问题, caracterizada por obstrucciones en las arterias pulmonares。Desafortunadamente, a menudo se subdiagnóstico, lo que puede tener consecuencias clínicas desastrosas. La creciente reliance en la Tomografía por Computadora Pulmonar Angiografía para el diagnóstico presenta desafíos y una necesidad urgente de soluciones de diagnóstico mejoradas. El objetivo principal de este estudio es utilizar técnicas de aprendizaje profundo para mejorar el diagnóstico asistido por computadora de PE.Este estudio presenta una enfoque dual-pronged que combina clasificación y detección para el diagnóstico de PE. Introducimos una Red Neural Convolucional Guiada por Atención (AG-CNN) para la clasificación, abarcando tanto regiones de lesiones globales como locales. Para la detección, se emplean modelos de estado del arte para identificar posibles regiones de PE. Además, se utilizan técnicas de ensamblado para mejorar la precisión de la detección al combinar las predicciones de diferentes modelos. Finalmente, se utiliza una estrategia heurística que combina las salidas de los clasificadores con las resultados de la detección, asegurando un diagnóstico robusto y preciso de PE.Nuestro enfoque de clasificación guiada por atención, probado con el conjunto de datos de la Universidad de Mashhad de Pulmonary Embolism (FUMPE), mejoró significativamente el Área bajo la Curva de Recepción Operativa (AUC) en un 8,1% en comparación con el modelo base DenseNet-121. Además, el uso de técnicas de ensamblado con modelos de detección mejoró considerablemente la precisión media de la detección (mAP) en un 4,7%. El marco de clasificación guiada por atención mejoró aún más los valores de mAP y F1 en comparación con los modelos de ensamblado.Nuestro estudio ofrece una abordación completa para el diagnóstico de PE utilizando técnicas de aprendizaje profundo, abordando los problemas prevalentes de subdiagnóstico y maldiagnóstico. Nuestro objetivo es mejorar la atención médica a los pacientes de PE mediante la integración de soluciones de inteligencia artificial en los flujos clínicos, destacando el potencial de la colaboración humana-AI en el diagnóstico médico.

Prompt Engineering a Prompt Engineer

  • paper_url: http://arxiv.org/abs/2311.05661
  • repo_url: https://github.com/promptslab/Awesome-Prompt-Engineering
  • paper_authors: Qinyuan Ye, Maxamed Axmed, Reid Pryzant, Fereshte Khani
  • for: 这个论文的目的是探索自动提示工程的问题,即构建一个更有效地引导大语言模型(LLM)完成自动提示工程的meta-提示。
  • methods: 该论文使用了一种名为PE2的新方法,该方法包括一个步骤 reasoning 模板和上下文指定,以及基于common optimization concepts的verbally化counterparts。
  • results: 根据实验结果,PE2方法在MultiArith和GSM8K数据集上的表现比”let’s think step by step”提高6.3%和3.1%。此外,PE2还在Instruction Induction benchmark、一个 suite of counterfactual tasks 和一个长的实际工业提问中表现出色,并且超过了先前的自动提示工程基elines。
    Abstract Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models (LLMs). It requires complex reasoning to examine the model's errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that LLMs can be meta-prompted to perform automatic prompt engineering, their potentials may not be fully untapped due to the lack of sufficient guidance to elicit complex reasoning capabilities in LLMs in the meta-prompt. In this work, we investigate the problem of "prompt engineering a prompt engineer" -- constructing a meta-prompt that more effectively guides LLMs to perform automatic prompt engineering. We introduce and analyze key components, such as a step-by-step reasoning template and context specification, which lead to improved performance. In addition, inspired by common optimization concepts such as batch size, step size and momentum, we introduce their verbalized counterparts to the meta-prompt and investigate their effects. Our final method, named PE2, finds a prompt that outperforms "let's think step by step" by 6.3% on the MultiArith dataset and 3.1% on the GSM8K dataset. To demonstrate its versatility, we apply PE2 to the Instruction Induction benchmark, a suite of counterfactual tasks, and a lengthy, real-world industrial prompt. In these settings, PE2 achieves strong performance and outperforms prior automatic prompt engineering baselines. Further, we show that PE2 makes meaningful and targeted prompt edits, amends erroneous or incomplete prompts, and presents non-trivial counterfactual reasoning abilities.
    摘要 提问工程是一项复杂但关键的任务,用于优化大型语言模型(LLM)的性能。它需要复杂的推理来检查模型的错误,推测现有提问中缺失或误导的部分,并通过清晰的沟通方式传达任务。据 latest works 表明,LLM 可以被自动提问来执行提问工程,但它们的潜力可能没有被完全启用,因为缺乏充分的指导来触发 LLM 的复杂推理能力。在这种情况下,我们调查 "提问工程提问工程" -- 构建一个更加有效地导引 LLM 进行自动提问工程的 meta-提问。我们介绍和分析关键组件,如步骤 reasoning 模板和上下文规定,它们带来了提高性能的影响。此外,我们引入了批处理大小、步长和冲击的概念,并对它们的词汇化版本进行调查。我们的最终方法,名为 PE2,在 MultiArith 数据集上击败 "让我们一步一步思考" 的提问,提高了6.3%。此外,我们在 Instruction Induction 数据集和一个实际工业提问中应用 PE2,并在这些设置中达到了强性表现。进一步,我们表明 PE2 可以做出有意义和有目标的提问编辑,修正错误或不充分的提问,并展示了非常轻松的对抗性能。

Mixture of Weak & Strong Experts on Graphs

  • paper_url: http://arxiv.org/abs/2311.05185
  • repo_url: None
  • paper_authors: Hanqing Zeng, Hanjia Lyu, Diyi Hu, Yinglong Xia, Jiebo Luo
  • for: 这个论文主要目的是提出一种基于混合弱和强专家的图 neural network(GNN)模型,以提高图 классификация的表现。
  • methods: 这个模型使用了一种混合弱和强专家的方法,其中弱专家是一个轻量级多层感知器(MLP),强专家是一个常见的图 neural network(GNN)。这个模型还使用了一种“信心”机制来控制各个专家之间的合作方式。
  • results: 实验结果表明,这个模型可以在6个标准图类型的benchmark上实现显著的准确率提升,包括同型和不同型图。
    Abstract Realistic graphs contain both rich self-features of nodes and informative structures of neighborhoods, jointly handled by a GNN in the typical setup. We propose to decouple the two modalities by mixture of weak and strong experts (Mowst), where the weak expert is a light-weight Multi-layer Perceptron (MLP), and the strong expert is an off-the-shelf Graph Neural Network (GNN). To adapt the experts' collaboration to different target nodes, we propose a "confidence" mechanism based on the dispersion of the weak expert's prediction logits. The strong expert is conditionally activated when either the node's classification relies on neighborhood information, or the weak expert has low model quality. We reveal interesting training dynamics by analyzing the influence of the confidence function on loss: our training algorithm encourages the specialization of each expert by effectively generating soft splitting of the graph. In addition, our "confidence" design imposes a desirable bias toward the strong expert to benefit from GNN's better generalization capability. Mowst is easy to optimize and achieves strong expressive power, with a computation cost comparable to a single GNN. Empirically, Mowst shows significant accuracy improvement on 6 standard node classification benchmarks (including both homophilous and heterophilous graphs).
    摘要 Simplified Chinese:实际图表包含节点自身的 ricH self-feature 和 neighborhood 的信息结构,通常使用 GNN 处理。我们提议通过 mixture of weak and strong experts (Mowst) 来分离这两种模式。我们的weak expert是一个轻量级 Multi-layer Perceptron (MLP),而 strong expert 是一个 off-the-shelf Graph Neural Network (GNN)。为了适应不同的 target node,我们提出了一种 "信任度" 机制,基于 weak expert 预测 logits 的分散程度。当 node 的分类 rely 于 neighborhood information 或 weak expert 的模型质量低时,strong expert 会被 activated。我们分析了 confidence 函数对 loss 的影响,发现我们的训练算法会鼓励每个专家特化,从而生成软分割的图。此外,我们的 "信任度" 设计会带来 desirable bias 向 strong expert,以便利用 GNN 的更好的泛化能力。Mowst 易于优化,并达到了 strong expressive power,计算成本与单个 GNN 相当。Empirically,Mowst 在 6 个标准节点分类 benchmark 上表现出了显著的准确率提升,包括 homophilous 和 heterophilous 图。

FireMatch: A Semi-Supervised Video Fire Detection Network Based on Consistency and Distribution Alignment

  • paper_url: http://arxiv.org/abs/2311.05168
  • repo_url: None
  • paper_authors: Qinghua Lin, Zuoyong Li, Kun Zeng, Haoyi Fan, Wei Li, Xiaoguang Zhou
  • for: 提高视频中的火灾检测性能
  • methods: 基于一致 regularization 和对抗分布尺度Alignment的 semi-supervised 模型 FireMatch
  • results: 在两个真实世界的火灾数据集上 achieved 76.92% 和 91.81% 的准确率,比现有的 semi-supervised 分类方法高Here’s a brief explanation of each point:* “for”: The paper aims to improve the performance of fire detection in videos.* “methods”: The proposed method is based on consistency regularization and adversarial distribution alignment, and is called FireMatch.* “results”: The proposed method achieved high accuracy (76.92% and 91.81%) on two real-world fire datasets, outperforming current state-of-the-art semi-supervised classification methods.
    Abstract Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.81% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.
    摘要 深度学习技术对视频中的火灾检测表现有了很大提升。然而,视频基于的火灾检测模型却依赖于标注数据,并且标注数据的获得是特别的成本和时间consuming,尤其是对视频数据的处理。面对有限的标注视频数据,我们提议一种半supervised火灾检测模型,即FireMatch,基于一致regulization和对抗分布对齐。首先,我们将一致regulization与pseudo-标签结合使用。对于未标注数据,我们设计了视频数据增强,以获得对应的弱增强和强增强样本。提案的模型预测弱增强样本,并保留pseudo-标签在阈值以上,而在强增强样本上进行训练,以学习更加稳定的特征表示。其次,我们使用对抗分布对齐生成视频跨集augmented样本,以扩大训练数据,并减轻由不充分的标注数据导致的分类性能下降。最后,我们引入了公平损失,以帮助模型对输入样本产生多样的预测,解决火类分类场景中高确度对非火类的问题。FireMatch在两个实际的火灾数据集上取得了76.92%和91.81%的准确率,分别超过当前最佳半supervised分类方法。实验结果表明,提议的方法可以在火灾检测中提高模型的性能。

$\textit{Labor Space}$: A Unifying Representation of the Labor Market via Large Language Models

  • paper_url: http://arxiv.org/abs/2311.06310
  • repo_url: None
  • paper_authors: Seongwoon Kim, Yong-Yeol Ahn, Jaehyuk Park
  • for: 这个论文旨在为劳动市场分析和优化提供一个综合性的框架,帮助政策制定者和企业领导者更好地理解劳动市场的复杂关系。
  • methods: 该论文使用大型自然语言模型进行精度调整,从而生成了一个劳动市场实体之间的vector空间嵌入,称为”劳动空间”。这个嵌入可以暴露各种劳动市场实体之间的复杂关系,并且可以进行类型特定的凝集。
  • results: 该论文通过使用”劳动空间”,可以实现对各种劳动市场实体之间的复杂关系的探索和分析,例如在经济轴上位置不同类型实体,如制造业和医疗业之间的关系。此外,”劳动空间”还允许实体之间的向量加算,从而可以研究各种复杂的关系,并且可以估算经济冲击对各个单位和其它单位的响应。
    Abstract The labor market is a complex ecosystem comprising diverse, interconnected entities, such as industries, occupations, skills, and firms. Due to the lack of a systematic method to map these heterogeneous entities together, each entity has been analyzed in isolation or only through pairwise relationships, inhibiting comprehensive understanding of the whole ecosystem. Here, we introduce $\textit{Labor Space}$, a vector-space embedding of heterogeneous labor market entities, derived through applying a large language model with fine-tuning. Labor Space exposes the complex relational fabric of various labor market constituents, facilitating coherent integrative analysis of industries, occupations, skills, and firms, while retaining type-specific clustering. We demonstrate its unprecedented analytical capacities, including positioning heterogeneous entities on an economic axes, such as `Manufacturing--Healthcare'. Furthermore, by allowing vector arithmetic of these entities, Labor Space enables the exploration of complex inter-unit relations, and subsequently the estimation of the ramifications of economic shocks on individual units and their ripple effect across the labor market. We posit that Labor Space provides policymakers and business leaders with a comprehensive unifying framework for labor market analysis and simulation, fostering more nuanced and effective strategic decision-making.
    摘要 劳动市场是一个复杂的生态系统,包括多种不同的实体,如产业、职业、技能和企业。由于缺乏一个系统的方法来映射这些异质的实体,每个实体都只能分析在孤立状态或者只有对应关系,这使得劳动市场的整体系统不能得到全面的理解。在这里,我们介绍了“劳动空间”,一种基于大型自然语言模型的 vector-space 嵌入,用于映射劳动市场中不同类型的实体。劳动空间暴露了劳动市场各个实体之间的复杂关系网络,使得可以进行整体的劳动市场分析和模拟,同时保持类型特有的划分。我们示出了劳动空间的前所未有分析能力,包括将劳动市场实体位置在经济轴上,如“制造业--医疗业”,以及通过向这些实体进行向量加法,进而探索各个实体之间的复杂关系,并且估算经济冲击的影响和它们的冲击波在劳动市场中的传播。我们认为,劳动空间为政策制定者和企业领导人提供了一个普遍的一体化框架,帮助他们更加精准地制定策略,从而促进劳动市场的发展和稳定。

RAPID: Training-free Retrieval-based Log Anomaly Detection with PLM considering Token-level information

  • paper_url: http://arxiv.org/abs/2311.05160
  • repo_url: https://github.com/dsba-lab/rapid
  • paper_authors: Gunho No, Yukyung Lee, Hyeongwon Kang, Pilsung Kang
    for:This paper focuses on the task of log anomaly detection in real-time, with the goal of identifying subtle anomalies in rapidly accumulating logs without requiring dataset-specific training.methods:The proposed method, RAPID, treats logs as natural language and extracts representations using pre-trained language models. It also employs a retrieval-based technique to contrast test logs with the most similar normal logs, obviating the need for log-specific training and incorporating token-level information for refined detection.results:Experimental results show that RAPID demonstrates competitive performance compared to prior models and achieves the best performance on certain datasets, while also reducing the computational cost needed for comparison. The method is capable of real-time detection without delay, as verified through various research questions.Here is the same information in Simplified Chinese text:for:这篇论文主要关注logs anomaly detection的实时任务,目的是在快速积累的logs中检测微妙的异常性,而无需特定数据集训练。methods:提议的方法RAPID将logs视为自然语言,通过预训练的语言模型提取表示。它还实施了一种 retrieve-based 技术,将测试logs与最相似的正常logs进行对比,从而减少了需要特定数据集训练的需求。results:实验结果表明,RAPID可以与先前的模型相比,在某些数据集上达到最佳性能,同时减少了对比所需的计算成本。该方法可以在实时中进行检测,并通过多个研究问题的测试,证明了其无延迟的可行性。
    Abstract As the IT industry advances, system log data becomes increasingly crucial. Many computer systems rely on log texts for management due to restricted access to source code. The need for log anomaly detection is growing, especially in real-world applications, but identifying anomalies in rapidly accumulating logs remains a challenging task. Traditional deep learning-based anomaly detection models require dataset-specific training, leading to corresponding delays. Notably, most methods only focus on sequence-level log information, which makes the detection of subtle anomalies harder, and often involve inference processes that are difficult to utilize in real-time. We introduce RAPID, a model that capitalizes on the inherent features of log data to enable anomaly detection without training delays, ensuring real-time capability. RAPID treats logs as natural language, extracting representations using pre-trained language models. Given that logs can be categorized based on system context, we implement a retrieval-based technique to contrast test logs with the most similar normal logs. This strategy not only obviates the need for log-specific training but also adeptly incorporates token-level information, ensuring refined and robust detection, particularly for unseen logs. We also propose the core set technique, which can reduce the computational cost needed for comparison. Experimental results show that even without training on log data, RAPID demonstrates competitive performance compared to prior models and achieves the best performance on certain datasets. Through various research questions, we verified its capability for real-time detection without delay.
    摘要 随着信息技术的发展,系统日志数据变得越来越重要。许多计算机系统利用日志文本进行管理,因为有限的访问源代码。寻找日志异常现象的需求在实际应用中增长,特别是面临快速积累的日志数据,但 tradicional的深度学习基于异常检测模型需要特定的数据集训练,导致延迟。尤其是,大多数方法只关注日志序列级别的信息,这使得细致的异常检测变得更加困难,并且经常包含difficult to utilize的推理过程。我们介绍了RAPID模型,利用日志数据的自然语言特征,通过预训练的自然语言模型提取表示。由于日志可以根据系统上下文分类,我们实施了 retrieve-based 技术,将测试日志与最相似的正常日志进行对比。这种策略不仅减少了训练日志的需求,而且具有Token-level信息的包容力,使检测更加精细和 Robust。我们还提出核心集技术,可以减少比较所需的计算成本。实验结果表明,无需训练日志数据,RAPID仍然可以与先前模型相比,并在某些数据集上达到最佳性能。通过多个研究问题,我们证明了它在实时检测中的可靠性。

Dialogizer: Context-aware Conversational-QA Dataset Generation from Textual Sources

  • paper_url: http://arxiv.org/abs/2311.07589
  • repo_url: None
  • paper_authors: Yerin Hwang, Yongil Kim, Hyunkyung Bae, Jeesoo Bang, Hwanhee Lee, Kyomin Jung
  • for: 提高 Conversational question answering (ConvQA) 数据稀缺问题的解决方案
  • methods: 利用文档生成 ConvQA 数据集,并具有对话填充和话题识别两个训练任务
  • results: 使用我们的框架生成的问题具有更高的上下文相关性,并通过自动评估和人工评估而证明其质量高于基eline模型
    Abstract To address the data scarcity issue in Conversational question answering (ConvQA), a dialog inpainting method, which utilizes documents to generate ConvQA datasets, has been proposed. However, the original dialog inpainting model is trained solely on the dialog reconstruction task, resulting in the generation of questions with low contextual relevance due to insufficient learning of question-answer alignment. To overcome this limitation, we propose a novel framework called Dialogizer, which has the capability to automatically generate ConvQA datasets with high contextual relevance from textual sources. The framework incorporates two training tasks: question-answer matching (QAM) and topic-aware dialog generation (TDG). Moreover, re-ranking is conducted during the inference phase based on the contextual relevance of the generated questions. Using our framework, we produce four ConvQA datasets by utilizing documents from multiple domains as the primary source. Through automatic evaluation using diverse metrics, as well as human evaluation, we validate that our proposed framework exhibits the ability to generate datasets of higher quality compared to the baseline dialog inpainting model.
    摘要

  • paper_url: http://arxiv.org/abs/2311.05155
  • repo_url: https://github.com/koustavagoswami/weakly_supervised-cognate_detection
  • paper_authors: Koustava Goswami, Priya Rani, Theodorus Fransen, John P. McCrae
  • for: 本研究旨在提高对少语言的语理理解能力,包括无监督机器翻译、命名实体识别和信息检索等任务。
  • methods: 该研究提出了一种语言非参数的深度学习弱监督词义检测框架,使用 morphological 知识来提高词义检测的准确率。
  • results: 实验结果显示,该方法不仅可以在不同语言家族的数据集上达到显著提高,而且也超过了现有的参数化和无监督方法的性能。 code 和数据集生成脚本可以在 GitHub 上找到。
    Abstract Exploiting cognates for transfer learning in under-resourced languages is an exciting opportunity for language understanding tasks, including unsupervised machine translation, named entity recognition and information retrieval. Previous approaches mainly focused on supervised cognate detection tasks based on orthographic, phonetic or state-of-the-art contextual language models, which under-perform for most under-resourced languages. This paper proposes a novel language-agnostic weakly-supervised deep cognate detection framework for under-resourced languages using morphological knowledge from closely related languages. We train an encoder to gain morphological knowledge of a language and transfer the knowledge to perform unsupervised and weakly-supervised cognate detection tasks with and without the pivot language for the closely-related languages. While unsupervised, it overcomes the need for hand-crafted annotation of cognates. We performed experiments on different published cognate detection datasets across language families and observed not only significant improvement over the state-of-the-art but also our method outperformed the state-of-the-art supervised and unsupervised methods. Our model can be extended to a wide range of languages from any language family as it overcomes the requirement of the annotation of the cognate pairs for training. The code and dataset building scripts can be found at https://github.com/koustavagoswami/Weakly_supervised-Cognate_Detection
    摘要 利用 cognate 的抽象 Transfer Learning 在不具备资源的语言上进行语言理解任务,包括无监督机器翻译、命名实体识别和信息检索。前一些方法主要是基于orthographic、phonetic或状态艺术语言模型,这些方法对大多数不具备资源的语言表现不佳。这篇论文提出了一种新的语言agnostic 的弱监督深度 cognate 检测框架 для不具备资源的语言,使用 morphological 知识从相似语言中获得。我们训练了一个encoder以获得一语言的 morphological 知识,然后将该知识传递给表达式来实现无监督和弱监督 cognate 检测任务,无需手动制作 cognate 对。我们在不同的发布的 cognate 检测数据集上进行了实验,并观察到了对state-of-the-art 的显著改进,同时我们的方法还超过了state-of-the-art 监督和无监督方法。我们的模型可以扩展到各种语言家族,因为它不需要 annotate cognate 对进行训练。代码和数据集生成脚本可以在 找到。

Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual Downstream Tasks

  • paper_url: http://arxiv.org/abs/2311.05152
  • repo_url: https://github.com/haoyi-duan/dg-sct
  • paper_authors: Haoyi Duan, Yan Xia, Mingze Zhou, Li Tang, Jieming Zhu, Zhou Zhao
  • for: 本研究旨在提高大规模预训练模型在多模态任务中的性能,尤其是在多modal输入特征提取方面,以提高下游任务的表现。
  • methods: 该研究提出了一种新的双引导空时通道 temporal(DG-SCT)注意机制,该机制利用音频和视觉模态作为软提示,动态调整预训练模型中的参数,以适应当前多模态输入特征。
  • results: 实验证明,该提出的模型在多个下游任务中达到了状态略作即AVE、AVVP、AVS和AVQA等任务的最佳效果,并在具有几 shot和零 shot情况下表现出色。
    Abstract In recent years, the deployment of large-scale pre-trained models in audio-visual downstream tasks has yielded remarkable outcomes. However, these models, primarily trained on single-modality unconstrained datasets, still encounter challenges in feature extraction for multi-modal tasks, leading to suboptimal performance. This limitation arises due to the introduction of irrelevant modality-specific information during encoding, which adversely affects the performance of downstream tasks. To address this challenge, this paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mechanism. This mechanism leverages audio and visual modalities as soft prompts to dynamically adjust the parameters of pre-trained models based on the current multi-modal input features. Specifically, the DG-SCT module incorporates trainable cross-modal interaction layers into pre-trained audio-visual encoders, allowing adaptive extraction of crucial information from the current modality across spatial, channel, and temporal dimensions, while preserving the frozen parameters of large-scale pre-trained models. Experimental evaluations demonstrate that our proposed model achieves state-of-the-art results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA. Furthermore, our model exhibits promising performance in challenging few-shot and zero-shot scenarios. The source code and pre-trained models are available at https://github.com/haoyi-duan/DG-SCT.
    摘要 Recently, the deployment of large-scale pre-trained models in audio-visual downstream tasks has achieved remarkable results. However, these models, primarily trained on single-modality unconstrained datasets, still struggle with feature extraction for multi-modal tasks, leading to suboptimal performance. This limitation arises from the introduction of irrelevant modality-specific information during encoding, which negatively affects the performance of downstream tasks. To address this challenge, this paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mechanism. This mechanism leverages audio and visual modalities as soft prompts to dynamically adjust the parameters of pre-trained models based on the current multi-modal input features. Specifically, the DG-SCT module incorporates trainable cross-modal interaction layers into pre-trained audio-visual encoders, allowing adaptive extraction of crucial information from the current modality across spatial, channel, and temporal dimensions, while preserving the frozen parameters of large-scale pre-trained models. Experimental evaluations show that our proposed model achieves state-of-the-art results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA. Furthermore, our model exhibits promising performance in challenging few-shot and zero-shot scenarios. The source code and pre-trained models are available at https://github.com/haoyi-duan/DG-SCT.

Enhancing Instance-Level Image Classification with Set-Level Labels

  • paper_url: http://arxiv.org/abs/2311.05659
  • repo_url: https://github.com/djdprogramming/adfa2
  • paper_authors: Renyu Zhang, Aly A. Khan, Yuxin Chen, Robert L. Grossman
  • for: 提高实例级图像分类的精度,使用集成粗细标签。
  • methods: 基于集成粗细标签进行实例级图像分类,并提供了一种新的方法来增强实例级图像分类的精度。
  • results: 实验结果显示,该方法可以提高实例级图像分类的精度,比传统单个实例标签基础方法高出13%。
    Abstract Instance-level image classification tasks have traditionally relied on single-instance labels to train models, e.g., few-shot learning and transfer learning. However, set-level coarse-grained labels that capture relationships among instances can provide richer information in real-world scenarios. In this paper, we present a novel approach to enhance instance-level image classification by leveraging set-level labels. We provide a theoretical analysis of the proposed method, including recognition conditions for fast excess risk rate, shedding light on the theoretical foundations of our approach. We conducted experiments on two distinct categories of datasets: natural image datasets and histopathology image datasets. Our experimental results demonstrate the effectiveness of our approach, showcasing improved classification performance compared to traditional single-instance label-based methods. Notably, our algorithm achieves 13% improvement in classification accuracy compared to the strongest baseline on the histopathology image classification benchmarks. Importantly, our experimental findings align with the theoretical analysis, reinforcing the robustness and reliability of our proposed method. This work bridges the gap between instance-level and set-level image classification, offering a promising avenue for advancing the capabilities of image classification models with set-level coarse-grained labels.
    摘要 Instance-level图像分类任务traditionally rely on单个实例标签来训练模型,例如几 shot学习和转移学习。然而,设层粗略标签可以提供实际场景中更丰富的信息。在这篇论文中,我们提出了一种新的方法,用于增强实例图像分类。我们提供了对该方法的理论分析,包括快速过剩风险率的认可条件,为我们的方法提供了理论基础。我们在自然图像集和病理图像集两个不同类型的数据集上进行了实验,结果表明我们的方法可以提高图像分类性能,相比传统单个实例标签基础方法。特别是,我们的算法在病理图像分类任务上 achievement 13%的提升,与最强基准相比。这些实验结果与理论分析相符,证明了我们的方法的可靠性和可重复性。这种方法可以把实例图像分类和集合图像分类联系起来,为图像分类模型带来新的发展空间。

A Survey of Large Language Models in Medicine: Progress, Application, and Challenge

  • paper_url: http://arxiv.org/abs/2311.05112
  • repo_url: https://github.com/ai-in-health/medllmspracticalguide
  • paper_authors: Hongjian Zhou, Boyang Gu, Xinyu Zou, Yiru Li, Sam S. Chen, Peilin Zhou, Junling Liu, Yining Hua, Chengfeng Mao, Xian Wu, Zheng Li, Fenglin Liu
    for: This paper provides a comprehensive overview of the current progress, applications, and challenges faced by large language models (LLMs) in medicine.methods: The paper discusses the construction of medical LLMs and their downstream performances, as well as their potential utilization in real-world clinical practice.results: The paper provides insights into the opportunities and challenges of LLMs in medicine and serves as a valuable resource for constructing practical and effective medical LLMs. Additionally, the paper includes a regularly updated list of practical guide resources of medical LLMs.
    Abstract Large language models (LLMs), such as ChatGPT, have achieved substantial attention due to their impressive human language understanding and generation capabilities. Therefore, the application of LLMs in medicine to assist physicians and patient care emerges as a promising research direction in both artificial intelligence and clinical medicine. To this end, this survey provides a comprehensive overview of the current progress, applications, and challenges faced by LLMs in medicine. Specifically, we aim to address the following questions: 1) What are LLMs and how can medical LLMs be built? 2) What are the downstream performances of medical LLMs? 3) How can medical LLMs be utilized in real-world clinical practice? 4) What challenges arise from the use of medical LLMs? 5) How can we better construct and utilize medical LLMs? As a result, this survey aims to provide insights into the opportunities and challenges of LLMs in medicine and serve as a valuable resource for constructing practical and effective medical LLMs. A regularly updated list of practical guide resources of medical LLMs can be found at https://github.com/AI-in-Health/MedLLMsPracticalGuide.
    摘要 大型语言模型(LLMs),如ChatGPT,在人工智能和临床医学方面获得了广泛的注意,因为它们在人工智能和临床医学中表现出了卓越的语言理解和生成能力。因此,将LLMs应用在医疗领域以帮助医生和患者护理是一个有前途的研究方向。为了解答这些问题,本调查提供了LLMs在医疗领域的现有进步、应用和挑战。 Specifically, we aim to address the following questions:1. What are LLMs and how can medical LLMs be built?2. What are the downstream performances of medical LLMs?3. How can medical LLMs be utilized in real-world clinical practice?4. What challenges arise from the use of medical LLMs?5. How can we better construct and utilize medical LLMs?为了提供医疗LLMs的实用导航,我们建立了一个常更新的实用指南资源,可以在 GitHub 上找到:https://github.com/AI-in-Health/MedLLMsPracticalGuide。

Devil in the Landscapes: Inferring Epidemic Exposure Risks from Street View Imagery

  • paper_url: http://arxiv.org/abs/2311.09240
  • repo_url: https://github.com/0oshowero0/epidemicgcn
  • paper_authors: Zhenyu Han, Yanxin Xi, Tong Xia, Yu Liu, Yong Li
  • for: 这项研究旨在使用街景图像来评估感染病的风险。
  • methods: 研究人员使用了人群移动图模型和传染病启发图模型来捕捉人们的流动和感染行为。
  • results: 研究人员的方法在比较基eline模型时显著提高了8.54%的weighted F1分数,表明这种方法可以准确地评估街景图像中感染病的风险。
    Abstract Built environment supports all the daily activities and shapes our health. Leveraging informative street view imagery, previous research has established the profound correlation between the built environment and chronic, non-communicable diseases; however, predicting the exposure risk of infectious diseases remains largely unexplored. The person-to-person contacts and interactions contribute to the complexity of infectious disease, which is inherently different from non-communicable diseases. Besides, the complex relationships between street view imagery and epidemic exposure also hinder accurate predictions. To address these problems, we construct a regional mobility graph informed by the gravity model, based on which we propose a transmission-aware graph convolutional network (GCN) to capture disease transmission patterns arising from human mobility. Experiments show that the proposed model significantly outperforms baseline models by 8.54% in weighted F1, shedding light on a low-cost, scalable approach to assess epidemic exposure risks from street view imagery.
    摘要 建筑环境支持我们每天的活动,并 shape我们的健康。利用有用的街景图像,先前的研究已经证明了建筑环境和 Chronic non-communicable diseases 之间存在深刻的相关性,但是预测传染病风险仍然未得到充分研究。人与人之间的接触和互动会增加传染病的复杂性,与非传染病不同。此外,街景图像和疫情暴露之间的复杂关系也使准确预测变得困难。为解决这些问题,我们构建了基于重力模型的区域 mobilility 图,并基于这个图构建了一种带感染传播模式的传输感知图 convolutional neural network (GCN),以捕捉人们的 mobiliry 对疫情风险的影响。实验表明,我们提出的模型在 weighted F1 指标上比基准模型高出 8.54%,这显示了一种低成本、可扩展的方法来评估街景图像中的疫情风险。

A differentiable brain simulator bridging brain simulation and brain-inspired computing

  • paper_url: http://arxiv.org/abs/2311.05106
  • repo_url: None
  • paper_authors: Chaoming Wang, Tianqiu Zhang, Sichao He, Yifeng Gong, Hongyaoxing Gu, Shangyang Li, Si Wu
  • For: The paper aims to bridge the gap between brain simulation and brain-inspired computing (BIC) by developing a differentiable brain simulator called BrainPy.* Methods: BrainPy uses JAX and XLA to provide a range of sparse and event-driven operators for efficient and scalable brain simulation, an abstraction for managing synaptic computations, a modular and flexible interface for constructing multi-scale brain models, and an object-oriented just-in-time compilation approach to handle memory-intensive brain dynamics.* Results: The paper showcases the efficiency and scalability of BrainPy on benchmark tasks, demonstrates its ability to simulate biologically plausible spiking models, and discusses its potential to support research at the intersection of brain simulation and BIC.
    Abstract Brain simulation builds dynamical models to mimic the structure and functions of the brain, while brain-inspired computing (BIC) develops intelligent systems by learning from the structure and functions of the brain. The two fields are intertwined and should share a common programming framework to facilitate each other's development. However, none of the existing software in the fields can achieve this goal, because traditional brain simulators lack differentiability for training, while existing deep learning (DL) frameworks fail to capture the biophysical realism and complexity of brain dynamics. In this paper, we introduce BrainPy, a differentiable brain simulator developed using JAX and XLA, with the aim of bridging the gap between brain simulation and BIC. BrainPy expands upon the functionalities of JAX, a powerful AI framework, by introducing complete capabilities for flexible, efficient, and scalable brain simulation. It offers a range of sparse and event-driven operators for efficient and scalable brain simulation, an abstraction for managing the intricacies of synaptic computations, a modular and flexible interface for constructing multi-scale brain models, and an object-oriented just-in-time compilation approach to handle the memory-intensive nature of brain dynamics. We showcase the efficiency and scalability of BrainPy on benchmark tasks, highlight its differentiable simulation for biologically plausible spiking models, and discuss its potential to support research at the intersection of brain simulation and BIC.
    摘要 ��BrainPy是一个可微分的大脑模拟器,使得大脑模拟和智能系统研发可以更加紧密地相互协作。然而,现有的软件在这两个领域都无法实现这个目标,因为传统的大脑模拟器缺乏微分性,而深度学习框架则无法捕捉大脑动力学的生物物理实在性和复杂性。在这篇论文中,我们介绍了BrainPy,一个基于JAX和XLA的可微分大脑模拟器,以bridging大脑模拟和BIC之间的空难。BrainPy在JAX的强大AI框架上扩展了完整的功能,包括可靠、高效和可扩展的大脑模拟能力。它提供了一系列的稀疏和事件驱动运算符,抽象处理神经元计算的复杂性,可重构和灵活的多尺度大脑模型接口,以及对内存密集的大脑动力学进行对象驱动的即时编译方法。我们在 benchmark任务上展示了BrainPy的效率和可扩展性, highlighted its可微分的模拟方法,并讨论了它在大脑模拟和BIC的交叉研究中的潜力。

  • paper_url: http://arxiv.org/abs/2311.05089
  • repo_url: None
  • paper_authors: Daniele Giofré, Sneha Ghantasala
  • for: This paper explores alternatives to the attention-based layers in the transformers architecture for specialized domains like legal, where long texts are common.
  • methods: The authors use non-parametric techniques such as Hartley and Fourier transforms to replace the attention-based layers, and introduce a new hybrid Seq2Seq architecture that combines a no-attention-based encoder with an attention-based decoder.
  • results: The authors train models with long input documents from scratch in the legal domain setting, and achieve performance comparable to or better than existing summarization tasks with less compute and memory requirements. They also contribute to reducing the carbon footprint during training.Here’s the Chinese version of the three key points:
  • for: 这篇论文探讨了在专业领域如法律领域中,使用 transformers 架构时的限制,并提出了使用非参数化技术来替代注意力机制的方法。
  • methods: 作者使用非参数化技术如哈特利变换和弗朗哥变换来替代注意力机制,并提出了一种新的混合 Seq2Seq 架构,其中的编码器使用无注意力的方式,而解码器使用注意力的方式。
  • results: 作者在法律领域中使用长文本进行训练,并达到了与现有摘要任务相同或更好的性能,同时具有较少的计算和存储需求。他们还认为,采用这些简单的基础设施可以让更多人训练模型,并且对于减少训练过程中的碳脚印产生贡献。
    Abstract Since its introduction, the transformers architecture has seen great adoption in NLP applications, but it also has limitations. Although the self-attention mechanism allows for generating very rich representations of the input text, its effectiveness may be limited in specialized domains such as legal, where, for example, language models often have to process very long texts. In this paper, we explore alternatives to replace the attention-based layers with simpler token-mixing mechanisms: Hartley and Fourier transforms. Using these non-parametric techniques, we train models with long input documents from scratch in the legal domain setting. We also introduce a new hybrid Seq2Seq architecture, a no-attention-based encoder connected with an attention-based decoder, which performs quite well on existing summarization tasks with much less compute and memory requirements. We believe that similar, if not better performance, as in the case of long correlations of abstractive text summarization tasks, can be achieved by adopting these simpler infrastructures. This not only makes training models from scratch accessible to more people, but also contributes to the reduction of the carbon footprint during training.
    摘要 自它的引入以来,变换器体系在自然语言处理(NLP)应用中得到了广泛的采用,但它也有一些限制。尽管自我注意机制允许生成非常 ric的输入文本表示,但在特殊领域如法律领域中,语言模型经常需要处理非常长的文本。在这篇论文中,我们探讨使用非参数的字符混合机制来取代注意力基于的层:Hartley和傅立叹变换。使用这些非参数技术,我们在法律领域的长输入文档上训练模型从零开始。我们还介绍了一种新的混合Seq2Seq体系,一个没有注意力基于的编码器与一个注意力基于的解码器相连接,它在现有概要任务上表现非常好,需要 Much less compute和内存需求。我们认为,通过采用这些更简单的基础设施,可以实现类似或更好的性能,即在概要抽象文本摘要任务中,长期相关性的抽取。这不仅使得训练模型从零开始变得更加可 accessible,而且也对训练过程中的碳脚印产生了贡献。

Meta-learning of semi-supervised learning from tasks with heterogeneous attribute spaces

  • paper_url: http://arxiv.org/abs/2311.05088
  • repo_url: None
  • paper_authors: Tomoharu Iwata, Atsutoshi Kumagai
  • For: 本研究提出一种基于多任务的自适应学习方法,可以在不同任务中学习自动化分类和回归模型。* Methods: 该方法使用一种基于神经网络的变量特征自我注意层,可以同时嵌入标注和无标注数据,并且使用自适应分类或回归模型来估计无标注数据的标签。* Results: 我们的实验表明,我们的提出的方法可以在不同任务中的类型不同的数据集上提高预期的测试性能,并且超过现有的meta学习和半supervised学习方法。
    Abstract We propose a meta-learning method for semi-supervised learning that learns from multiple tasks with heterogeneous attribute spaces. The existing semi-supervised meta-learning methods assume that all tasks share the same attribute space, which prevents us from learning with a wide variety of tasks. With the proposed method, the expected test performance on tasks with a small amount of labeled data is improved with unlabeled data as well as data in various tasks, where the attribute spaces are different among tasks. The proposed method embeds labeled and unlabeled data simultaneously in a task-specific space using a neural network, and the unlabeled data's labels are estimated by adapting classification or regression models in the embedding space. For the neural network, we develop variable-feature self-attention layers, which enable us to find embeddings of data with different attribute spaces with a single neural network by considering interactions among examples, attributes, and labels. Our experiments on classification and regression datasets with heterogeneous attribute spaces demonstrate that our proposed method outperforms the existing meta-learning and semi-supervised learning methods.
    摘要 我们提出了一种基于多任务的适应学习方法,可以在不同任务的属性空间上学习。现有的半supervised meta-学习方法假设所有任务共享同一个属性空间,这限制了我们学习多样化任务。我们的方法可以使用不同任务的属性空间中的数据进行测试,并且可以通过使用嵌入Space来提高测试性能。我们的方法使用神经网络将标注和无标注数据同时嵌入到任务特定的空间中,并且使用适应分类或回归模型来估算无标注数据的标签。我们开发了可变特征自我注意层,这使得我们可以使用单个神经网络来找到不同任务的数据嵌入,并且考虑到例子、属性和标签之间的交互。我们的实验表明,我们的提议方法在类фикаition和回归任务中的不同属性空间上具有更高的性能,比较现有的meta-学习和半supervised学习方法。

Characterizing Large Language Models as Rationalizers of Knowledge-intensive Tasks

  • paper_url: http://arxiv.org/abs/2311.05085
  • repo_url: None
  • paper_authors: Aditi Mishra, Sajjadur Rahman, Hannah Kim, Kushan Mitra, Estevam Hruschka
  • for: This paper focuses on exploring the ability of large language models (LLMs) to provide well-grounded rationalizations for knowledge-intensive tasks, specifically commonsense multiple-choice questions.
  • methods: The paper uses expert-written examples in a few-shot manner to generate knowledge-grounded rationales, and compares these with crowdsourced rationalizations.
  • results: The study finds that knowledge-grounded rationales are preferred by crowd-workers due to their factuality, sufficiency, and comprehensive refutations, but further improvements in conciseness and novelty are required. Additionally, the paper shows that rationalization of incorrect model predictions can erode human trust in LLM-generated rationales, and proposes a two-stage pipeline to review task predictions and eliminate potential incorrect decisions before rationalization.
    Abstract Large language models (LLMs) are proficient at generating fluent text with minimal task-specific supervision. Yet, their ability to provide well-grounded rationalizations for knowledge-intensive tasks remains under-explored. Such tasks, like commonsense multiple-choice questions, require rationales based on world knowledge to support predictions and refute alternate options. We consider the task of generating knowledge-guided rationalization in natural language by using expert-written examples in a few-shot manner. Surprisingly, crowd-workers preferred knowledge-grounded rationales over crowdsourced rationalizations, citing their factuality, sufficiency, and comprehensive refutations. Although LLMs-generated rationales were preferable, further improvements in conciseness and novelty are required. In another study, we show how rationalization of incorrect model predictions erodes humans' trust in LLM-generated rationales. Motivated by these observations, we create a two-stage pipeline to review task predictions and eliminate potential incorrect decisions before rationalization, enabling trustworthy rationale generation.
    摘要 大型语言模型(LLM)能够生成流畅文本,但它们对知识型任务的有效证明仍然未得到充分探索。这些任务,如常识多选问题,需要基于世界知识的证明,以支持预测和排除备用选项。我们研究了使用专家写的例子来生成自然语言中的知识导向证明,并在几个例子的情况下进行了评估。results show that crowd-workers prefer knowledge-grounded rationales over crowdsourced rationalizations, citing their factuality, sufficiency, and comprehensive refutations. Although LLMs-generated rationales were preferable, further improvements in conciseness and novelty are required. In another study, we show how rationalization of incorrect model predictions erodes humans' trust in LLM-generated rationales. Motivated by these observations, we create a two-stage pipeline to review task predictions and eliminate potential incorrect decisions before rationalization, enabling trustworthy rationale generation.Note that Simplified Chinese is used in mainland China and Singapore, while Traditional Chinese is used in Taiwan and Hong Kong.

Signal Temporal Logic-Guided Apprenticeship Learning

  • paper_url: http://arxiv.org/abs/2311.05084
  • repo_url: None
  • paper_authors: Aniruddh G. Puranic, Jyotirmoy V. Deshmukh, Stefanos Nikolaidis
  • for: 本研究旨在提高控制策略的学习效果,特别是在包含多个子目标的任务中。
  • methods: 本文使用时间逻辑规范来描述高级任务目标,并将其编码到图形中以实现时间基于的度量。
  • results: 经过实验 validate 了我们的框架可以在多种机器人 manipulate simulations 中提高学习控制策略所需的示例数量。
    Abstract Apprenticeship learning crucially depends on effectively learning rewards, and hence control policies from user demonstrations. Of particular difficulty is the setting where the desired task consists of a number of sub-goals with temporal dependencies. The quality of inferred rewards and hence policies are typically limited by the quality of demonstrations, and poor inference of these can lead to undesirable outcomes. In this letter, we show how temporal logic specifications that describe high level task objectives, are encoded in a graph to define a temporal-based metric that reasons about behaviors of demonstrators and the learner agent to improve the quality of inferred rewards and policies. Through experiments on a diverse set of robot manipulator simulations, we show how our framework overcomes the drawbacks of prior literature by drastically improving the number of demonstrations required to learn a control policy.
    摘要 学习徒弟关系critically dependent于从用户示范中学习奖励和控制策略。特别是在目标任务包含一系列时间依赖关系时,推理出奖励和策略质量通常受到示范质量的限制,而且差异的推理可能会导致不良结果。在这封信中,我们表明如何使用时间逻辑规范来编码高级任务目标,并在图形中定义时间基于的度量来评估示范者和学习者机器人的行为,以提高推理出奖励和策略的质量。经过对多种机器人抓取器 simulate experiments,我们显示了我们的框架可以超越先前文献中的缺点,减少需要学习控制策略的示范数量。

Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs

  • paper_url: http://arxiv.org/abs/2311.05657
  • repo_url: https://github.com/allenai/lumos
  • paper_authors: Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, Bill Yuchen Lin
  • for: 本研究开发了一个名为Lumos的语言代理框架,用于训练语言代理。
  • methods: Lumos使用了一个统一的数据格式和一个模块化的架构,并使用开源大型语言模型(LLMs)。该架构包括三个模组:规划、降低和执行。
  • results: Lumos可以与现有的状态顶尖代理相比或超越其表现,并且具有多个优点:首先,Lumos在复杂问题回答和网络任务中表现出色,而且与更大的LLM代理相等的表现在数学任务中。其次,Lumos可以轻松地应对未见过的互动任务,并且表现更好于更大的LLM-based代理和专业代理。
    Abstract We introduce Lumos, a novel framework for training language agents that employs a unified data format and a modular architecture based on open-source large language models (LLMs). Lumos consists of three distinct modules: planning, grounding, and execution. The planning module breaks down a task into a series of high-level, tool-agnostic subgoals, which are then made specific by the grounding module through a set of low-level actions. These actions are subsequently executed by the execution module, utilizing a range of off-the-shelf tools and APIs. In order to train these modules effectively, high-quality annotations of subgoals and actions were collected and are made available for fine-tuning open-source LLMs for various tasks such as complex question answering, web tasks, and math problems. Leveraging this unified data and modular design, Lumos not only achieves comparable or superior performance to current, state-of-the-art agents, but also exhibits several key advantages: (1) Lumos surpasses GPT-4/3.5-based agents in complex question answering and web tasks, while equalling the performance of significantly larger LLM agents on math tasks; (2) Lumos outperforms open-source agents created through conventional training methods and those using chain-of-thoughts training; and (3) Lumos is capable of effectively generalizing to unseen interactive tasks, outperforming larger LLM-based agents and even exceeding performance of specialized agents.
    摘要 我们介绍Lumos,一个新的语言代理框架,它使用统一的数据格式和可重复架构,基于开源的大型语言模型(LLM)。Lumos包括三个不同的模组:规划、实现和降解。规划模组将任务分解成一系列高级、工具不受限制的子目标,这些子目标遭到降解模组通过一系列低级的动作调整为具体的动作。这些动作最后由执行模组执行,使用一组标准的工具和API。为了训练这些模组,我们收集了高品质的子目标和动作的标注,并将其用于精致化开源LLM的训练,以应对不同的任务,如复杂的问题回答、网络任务和数学问题。利用这个统一的数据和模块设计,Lumos不��ely享有与当前边缘的性能,并且具有以下几个优点:1. Lumos在复杂的问题回答和网络任务上超越GPT-4/3.5-based agents,而在数学问题上与训练更大的LLM agents相当。2. Lumos比较于使用常规训练方法或链接思维训练的开源代理优秀,并且在未见到的互动任务上表现出色。3. Lumos具有优秀的普遍化能力,可以对未见到的任务进行有效地应用,超越更大的LLM-based agents和特殊化的代理。

Mental Health Diagnosis in the Digital Age: Harnessing Sentiment Analysis on Social Media Platforms upon Ultra-Sparse Feature Content

  • paper_url: http://arxiv.org/abs/2311.05075
  • repo_url: None
  • paper_authors: Haijian Shao, Ming Zhu, Shengjie Zhai
    for: 这个研究旨在提高心理健康预测和监测的精度,通过分析社交媒体平台上的帖子和讨论来早期检测和 intervene 人们的心理疾病。methods: 我们提出了一种新的semantic feature пре处理技术,包括三个部分:1) mitigating feature sparsity with a weak classifier,2) adaptive feature dimension with modulus loops,3) deep-mining and extending features among the contexts。results: 我们使用了2022年Reddit心理健康数据集来检验抑郁、边缘性人格障碍(BPD)和躁郁病(BD)等疾病,并解决了数据稀缺问题,表现出99.81%非零元素。 после应用我们的预处理技术,特征稀缺度下降到85.4%。在与七个参考模型进行比较后,我们的方法表现出了显著的性能改进:准确率提高8.0%,特征精度提高0.069,特征准确率提高0.093,特征 recall提高0.102,特征F1分数提高0.059,AUC提高0.059。
    Abstract Amid growing global mental health concerns, particularly among vulnerable groups, natural language processing offers a tremendous potential for early detection and intervention of people's mental disorders via analyzing their postings and discussions on social media platforms. However, ultra-sparse training data, often due to vast vocabularies and low-frequency words, hinders the analysis accuracy. Multi-labeling and Co-occurrences of symptoms may also blur the boundaries in distinguishing similar/co-related disorders. To address these issues, we propose a novel semantic feature preprocessing technique with a three-folded structure: 1) mitigating the feature sparsity with a weak classifier, 2) adaptive feature dimension with modulus loops, and 3) deep-mining and extending features among the contexts. With enhanced semantic features, we train a machine learning model to predict and classify mental disorders. We utilize the Reddit Mental Health Dataset 2022 to examine conditions such as Anxiety, Borderline Personality Disorder (BPD), and Bipolar-Disorder (BD) and present solutions to the data sparsity challenge, highlighted by 99.81% non-zero elements. After applying our preprocessing technique, the feature sparsity decreases to 85.4%. Overall, our methods, when compared to seven benchmark models, demonstrate significant performance improvements: 8.0% in accuracy, 0.069 in precision, 0.093 in recall, 0.102 in F1 score, and 0.059 in AUC. This research provides foundational insights for mental health prediction and monitoring, providing innovative solutions to navigate challenges associated with ultra-sparse data feature and intricate multi-label classification in the domain of mental health analysis.
    摘要 在全球心理健康问题的增长中,特别是对护送群体来说,自然语言处理技术具有巨大的潜力,通过分析社交媒体平台上的发言和讨论来早期检测和 intervene 人们的心理疾病。然而,由于极其稀疏的训练数据,常常由于庞大的词汇和低频词汇,使分析精度受限。同时,症状的多标签和相似症状的共occurrence也使分类变得混乱。为解决这些问题,我们提出了一种新的Semantic feature预处理技术,具有三重结构:1. 减轻特征稀疏性的弱分类器,2. 适应特定的特征维度使用模块循环,3. 深入挖掘和扩展特征在上下文中。通过增强 semantic features,我们训练了一个机器学习模型,以预测和分类心理疾病。我们使用2022年的Reddit心理健康数据集来检查抑郁、边缘性人格障碍(BPD)和躁郁症(BD)等 Condition,并解决数据稀疏问题,表现为99.81%的非零元素。在我们的预处理技术应用后,特征稀疏性下降到85.4%。总的来说,我们的方法,相比七个参考模型,显示了显著的性能改善:准确率提高8.0%,精度提高0.069,准确率提高0.093,F1分数提高0.102,AUC提高0.059。这些研究提供了心理健康预测和监测的基础发现,提供了创新的解决方案,以便在心理健康分析领域 navigate 稀疏数据特征和复杂的多标签分类挑战。

A Framework to Assess (Dis)agreement Among Diverse Rater Groups

  • paper_url: http://arxiv.org/abs/2311.05074
  • repo_url: None
  • paper_authors: Vinodkumar Prabhakaran, Christopher Homan, Lora Aroyo, Alicia Parrish, Alex Taylor, Mark Díaz, Ding Wang
  • for: 本研究旨在提供一种用于评估对话AI安全性的多元观点分析框架,以优化安全性评估过程中的人类评分员Subjectivity。
  • methods: 本研究使用了一种包括多个评分员子组的多元观点分析框架,以捕捉评分员们的各自观点之间的系统性差异。
  • results: 研究发现了一些评分员子组的多元观点,并提供了关键的人类评分员Subjectivity的指标,可以帮助改进对话AI安全性评估过程。
    Abstract Recent advancements in conversational AI have created an urgent need for safety guardrails that prevent users from being exposed to offensive and dangerous content. Much of this work relies on human ratings and feedback, but does not account for the fact that perceptions of offense and safety are inherently subjective and that there may be systematic disagreements between raters that align with their socio-demographic identities. Instead, current machine learning approaches largely ignore rater subjectivity and use gold standards that obscure disagreements (e.g., through majority voting). In order to better understand the socio-cultural leanings of such tasks, we propose a comprehensive disagreement analysis framework to measure systematic diversity in perspectives among different rater subgroups. We then demonstrate its utility by applying this framework to a dataset of human-chatbot conversations rated by a demographically diverse pool of raters. Our analysis reveals specific rater groups that have more diverse perspectives than the rest, and informs demographic axes that are crucial to consider for safety annotations.
    摘要 现代会话AI技术的发展带来了严重的安全防范需求,以避免用户暴露于不够安全和侮辱性内容。大多数这些工作都是基于人类评分和反馈,但不考虑人类评分者的主观性和不同 identity 的系统性分歧。现有的机器学习方法大多忽略评分者主观性,使用 golden standards 隐藏分歧(例如,通过多数投票)。为了更好地理解这类任务的社会文化倾向,我们提出了一个全面的分歧分析框架,用于测量不同评分者 subgroup 之间的多样性观点。我们然后通过应用这个框架来分析一个人与机器人对话的评分结果,并发现特定的评分者组有更多的多样性观点,以及关键的人类特征轴。

Accelerating Exploration with Unlabeled Prior Data

  • paper_url: http://arxiv.org/abs/2311.05067
  • repo_url: None
  • paper_authors: Qiyang Li, Jason Zhang, Dibya Ghosh, Amy Zhang, Sergey Levine
  • for: 解决标准奖励学习(RL)算法在稀盐奖励任务上学习的问题。
  • methods: 利用无奖数据进行导航和加速探索,并将其与在线数据同时使用以优化策略和评估器。
  • results: 在一些具有挑战性的稀盐奖励领域中,包括AntMaze领域、Adroit手动操作领域和视觉模拟Robotic manipulation领域,实现了快速探索。
    Abstract Learning to solve tasks from a sparse reward signal is a major challenge for standard reinforcement learning (RL) algorithms. However, in the real world, agents rarely need to solve sparse reward tasks entirely from scratch. More often, we might possess prior experience to draw on that provides considerable guidance about which actions and outcomes are possible in the world, which we can use to explore more effectively for new tasks. In this work, we study how prior data without reward labels may be used to guide and accelerate exploration for an agent solving a new sparse reward task. We propose a simple approach that learns a reward model from online experience, labels the unlabeled prior data with optimistic rewards, and then uses it concurrently alongside the online data for downstream policy and critic optimization. This general formula leads to rapid exploration in several challenging sparse-reward domains where tabula rasa exploration is insufficient, including the AntMaze domain, Adroit hand manipulation domain, and a visual simulated robotic manipulation domain. Our results highlight the ease of incorporating unlabeled prior data into existing online RL algorithms, and the (perhaps surprising) effectiveness of doing so.
    摘要 Our approach is simple: we learn a reward model from online experience, label the unlabeled prior data with optimistic rewards, and then use it concurrently with the online data for downstream policy and critic optimization. This general formula leads to rapid exploration in several challenging sparse-reward domains, including the AntMaze domain, Adroit hand manipulation domain, and a visual simulated robotic manipulation domain. Our results demonstrate the ease of incorporating unlabeled prior data into existing online RL algorithms, and the effectiveness of doing so.